Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-18T08:10:36.327Z Has data issue: false hasContentIssue false

Vector magnetic field measurement and helicity of active regions

Published online by Cambridge University Press:  27 June 2012

M. Zhang
Affiliation:
Key Laboratory of Solar Activity, National Astronomical Observatory, Chinese Academy of Sciences, Beijing 100012, China
Y.Y. Deng
Affiliation:
Key Laboratory of Solar Activity, National Astronomical Observatory, Chinese Academy of Sciences, Beijing 100012, China
H.Q. Zhang
Affiliation:
Key Laboratory of Solar Activity, National Astronomical Observatory, Chinese Academy of Sciences, Beijing 100012, China
Get access

Abstract

The Solar Magnetic Field Telescope (SMFT) at the Huairou Solar Observing Station of the National Astronomical Observatory of China has been obtaining photospheric vector magnetograms on a daily basis for more than 20 years. In this brief review, I will first introduce our magnetograph, together with some efforts on correcting for a few known problems in filter-type magnetograph measurement. Then, I will focus on what we can learn from these vector magnetic field measurements with an emphasis on the helicity of active regions. It is generally believed that magnetic helicity is produced by solar dynamo in the convection zone and its accumulation in the corona will influence coronal dynamics. Our observations of helicity in active regions can thus be used to constrain dynamo models and suggest favorable conditions for coronal eruptions.

Type
Research Article
Copyright
© EAS, EDP Sciences 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ai, G.X., Li, W., & Zhang, H.Q., 1982, Chinese Astron. Astrophys., 6, 129
Ai, G.X., & Hu, Y., 1987, Acta Astron. Sin., 7, 311
Bao, S.D., & Zhang, H.Q., 1998, ApJ, 496, L43 CrossRef
Berger, M.A., 1984, Geophys. Astrophys. Fluid Dyn., 30, 79 CrossRef
Chatterjee, P., Choudhuri, A.R., & Petrovay, K., 2006, A&A, 449, 781
Deng, Y.Y., Ai, G.X., Wang, J.S., et al., 1997, Solar Phys., 173, 207
Deng, Y.Y., & Yan, Y.H., 2001, Proc. IAU Symp., 196, 138
Field, G.B., Blackman, E.G., & Chou, H., 1999, ApJ, 513, 638 CrossRef
Gao, Y., Su, J.T., Xu, H.Q., & Zhang, H.Q., 2008, MNRAS, 386, 1959 CrossRef
Hale, G.E., 1908, ApJ, 28, 315 CrossRef
Hagyard, M.J., Adams, M.L., Smith, J.E., & West, E.A., 2000, Solar Phys., 191, 309 CrossRef
Hao, J., & Zhang, M., 2011, ApJ, 733, L27 CrossRef
Liu, S., Zhang, H.Q., Su, J.T., 2011, Solar Phys., 270, 89 CrossRef
Liu, J.H., & Zhang, H.Q., 2006, Solar Phys., 234, 21 CrossRef
Pevtsov, A.A., Canfield, R.C., & Metcalf, T.R., 1995, ApJ, 440, L109 CrossRef
Su, J.T., & Zhang, H.Q., 2004a, Chinese J. Astron. Astrophys., 4, 365 CrossRef
Su, J.T., & Zhang, H.Q., 2004b, Solar Phys., 222, 17 CrossRef
Su, J.T., Jing, J., Wang, H.M., et al., 2011, ApJ, 733, 94 CrossRef
Wang, D., Zhang, M., Li, H., & Zhang, H.Q., 2009a, Sci. China Ser. G, 53, 1707 CrossRef
Wang, D., Zhang, M., Li, H., & Zhang, H.Q., 2009b, Solar Phys., 260, 233 CrossRef
Wang, H.N., Yan, Y.H., & Sakurai, T., 2001, Solar Phys., 201, 323 CrossRef
Yan, Y.H., & Sakurai, T., 2000, Solar Phys., 195, 89 CrossRef
Yang, S.B., Buchner, J., & Zhang, H.Q., 2009, ApJ, 695, L25 CrossRef
Yan, Y.H., Deng, Y.Y., & Karlicky, M., 2001, ApJ, 551, L115 CrossRef
Zhang, H.Q., & Ai, G.X., 1986, Acta Astron. Sin., 27, 217
Zhang, M., & Low, B.C., 2005, ARA&A, 43, 103 CrossRef
Zhang, M., Flyer, N., & Low, B.C., 2006, ApJ, 644, 575 CrossRef
Zhang, M., 2006, ApJ, 646, L85 CrossRef
Zhang, Y., Tan, B.L., & Yan, Y.H., 2008, ApJ, 682, L133 CrossRef
Zhang, Y., Tan, B.L., & Yan, Y.H., 2009, ApJ, 704, L1622 CrossRef