Hostname: page-component-5c6d5d7d68-wbk2r Total loading time: 0 Render date: 2024-08-10T17:40:24.949Z Has data issue: false hasContentIssue false

Non-smooth homoclinic bifurcation in a conceptual climate model

Published online by Cambridge University Press:  05 April 2018

JULIE LEIFELD*
Affiliation:
Department of Mathematics, University of Minnesota, Minneapolis, MN, USA email: leif0020@umn.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Collision of equilibria with a splitting manifold has been locally studied, but might also be a contributing factor to global bifurcations. In particular, a boundary collision can be coincident with collision of a virtual equilibrium with a periodic orbit, giving an analogue to a homoclinic bifurcation. This type of bifurcation is demonstrated in a non-smooth climate application. Here, we describe the non-smooth bifurcation structure, as well as the smooth bifurcation structure for which the non-smooth homoclinic bifurcation is a limiting case.

Type
Papers
Copyright
Copyright © Cambridge University Press 2018 

References

[1] Buzzi, C. A., da Silva, P. R. & Teixeira, M. A. (2006) A singular approach to discontinuous vector fields on the plane. J. Differ. Equ. 231 (2), 633655.Google Scholar
[2] Colombo, A., di Bernardo, M., Hogan, S. J. & Jeffrey, M. R. (2012) Bifurcations of piecewise smooth flows: Perspectives, methodologies and open problems. Phys. D: Nonlinear Phenom. 241 (22), 18451860.Google Scholar
[3] Dercole, F., Gragnani, A. & Rinaldi, S. (2007) Bifurcation analysis of piecewise smooth ecological models. Theor. Popul. Biol. 72 (2), 197213.Google Scholar
[4] di Bernardo, M., Budd, C., Champneys, A. R. & Kowalczyk, P. (2008) Piecewise-Smooth Dynamical Systems: Theory and Applications, vol. 163, Springer Science and Business Media, London, UK.Google Scholar
[5] di Bernardo, M., Nordmark, A. & Olivar, G. (2008) Discontinuity-induced bifurcations of equilibria in piecewise-smooth and impacting dynamical systems. Phys. D: Nonlinear Phenom. 237 (1), 119136.Google Scholar
[6] Eisenman, I. & Wettlaufer, J. S. (2009) Nonlinear threshold behavior during the loss of arctic sea ice. Proc. Natl. Acad. Sci. USA 106 (1), 2832.Google Scholar
[7] Filippov, A. F. & Arscott, F. M. (1988) Differential Equations with Discontinuous Righthand Sides: Control Systems, vol. 18, Springer Science and Business Media, Dordrecht, Netherlands.Google Scholar
[8] Guardia, M., Seara, T. M. & Teixeira, M. A. (2011) Generic bifurcations of low codimension of planar filippov systems. J. Differ. Equ. 250 (4), 19672023.Google Scholar
[9] Hill, K., Abbot, D. S. & Silber, M. (2015) Analysis of an arctic sea ice loss model in the limit of a discontinuous albedo. SIAM J. Appl. Dynamical Syst. 15 (2), 11631192. arXiv:1509.00059.Google Scholar
[10] Jeffrey, M. R. (2011) Nondeterminism in the limit of nonsmooth dynamics. Phys. Rev. Lett. 106 (25), Article no. 254103.Google Scholar
[11] Jeffrey, M. R. (2014) Hidden dynamics in models of discontinuity and switching. Phys. D: Nonlinear Phenom. 273, 3445.Google Scholar
[12] Kristiansen, K. U. & Hogan, S. J. (2015) Regularizations of two-fold bifurcations in planar piecewise smooth systems using blow up. SIAM J. Appl. Dyn. Syst. 14 (4), 17311786. arXiv:1502.06210.Google Scholar
[13] Kuznetsov, Y. A., Rinaldi, S. & Gragnani, A. (2003) One-parameter bifurcations in planar filippov systems. Int. J. Bifurc. Chaos 13 (8), 21572188.Google Scholar
[14] Llibre, J., da Silva, P. R. & Teixeira, M. A. (2009) Study of singularities in nonsmooth dynamical systems via singular perturbation. SIAM J. Appl. Dyn. Syst. 8 (1), 508526.Google Scholar
[15] Makarenkov, O. & Lamb, J. S. W. (2012) Dynamics and bifurcations of nonsmooth systems: A survey. Phys. D: Nonlinear Phenom. 241 (22), 18261844.Google Scholar
[16] Sotomayor, J. & Teixeira, M. A. (1996) Regularization of discontinuous vector fields. In: International Conference on Differential Equations, Lisboa, Portugal, pp. 207–223.Google Scholar
[17] Stommel, H. (1961) Thermohaline convection with two stable regimes of flow. Tellus 13 (2), 224230.Google Scholar
[18] Teixeira, M. A. & da Silva, P. R. (2012) Regularization and singular perturbation techniques for non-smooth systems. Phys. D: Nonlinear Phenom. 241 (22), 19481955.Google Scholar
[19] Welander, P. (1982) A simple heat-salt oscillator. Dyn. Atmos. 6 (4), 233242.Google Scholar
[20] Welander, P. (1986) Thermohaline effects in the ocean circulation and related simple models. NATO ASI Ser. C: Math. Phys. Sci. 190, pp. 163200.Google Scholar