Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T17:06:00.872Z Has data issue: false hasContentIssue false

Periodic travelling interfacial hydroelastic waves with or without mass II: Multiple bifurcations and ripples

Published online by Cambridge University Press:  10 July 2018

BENJAMIN F. AKERS
Affiliation:
Department of Mathematics and Statistics, Air Force Institute of Technology, 2950 Hobson Way, WPAFB, OH 45433, USA email: benjamin.akers@afit.edu
DAVID M. AMBROSE
Affiliation:
Department of Mathematics, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, USA email: dma68@drexel.edu, dws57@drexel.edu
DAVID W. SULON
Affiliation:
Department of Mathematics, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, USA email: dma68@drexel.edu, dws57@drexel.edu

Abstract

In a prior work, the authors proved a global bifurcation theorem for spatially periodic interfacial hydroelastic travelling waves on infinite depth, and computed such travelling waves. The formulation of the travelling wave problem used both analytically and numerically allows for waves with multi-valued height. The global bifurcation theorem required a one-dimensional kernel in the linearization of the relevant mapping, but for some parameter values, the kernel is instead two-dimensional. In the present work, we study these cases with two-dimensional kernels, which occur in resonant and non-resonant variants. We apply an implicit function theorem argument to prove existence of travelling waves in both of these situations. We compute the waves numerically as well, in both the resonant and non-resonant cases.

Type
Papers
Creative Commons
This is a work of the U.S. Government and is not subject to copyright protection in the United States.
Copyright
Copyright © Cambridge University Press 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ablowitz, M. J. & Fokas, A. S. (1997) Complex Variables: Introduction and Applications, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge.Google Scholar
[2] Akers, B. Ambrose, D. M. & Wright, J. D. (2013) Traveling waves from the arclength parameterization: Vortex sheets with surface tension. Interfaces Free Bound. 15 (3), 359380.Google Scholar
[3] Akers, B. F. (2016) High-order perturbation of surfaces short course: Traveling water waves. In: Lectures on the Theory of Water Waves, London Mathematical Society Lecture Note Series, Vol. 426, Cambridge University Press, Cambridge, pp. 1931.Google Scholar
[4] Akers, B. F., Ambrose, D. M., Pond, K. & Wright, J. D. (2016) Overturned internal capillary-gravity waves. Eur. J. Mech. B: Fluids 57, 143151.Google Scholar
[5] Akers, B. F., Ambrose, D. M. & Sulon, D. W. (2017) Periodic traveling interfacial hydroelastic waves with or without mass. Z. Angew. Math. Phys. 68, 141.Google Scholar
[6] Akers, B. F. & Gao, W. (2012) Wilton ripples in weakly nonlinear model equations. Commun. Math. Sci. 10 (3), 10151024.Google Scholar
[7] Alben, S. & Shelley, M. J. (2008) Flapping states of a flag in an inviscid fluid: Bistability and the transition to chaos. Phys. Rev. Lett. 100 (7), 074301.Google Scholar
[8] Ambrose, D. M. (2003) Well-posedness of vortex sheets with surface tension. SIAM J. Math. Anal. 35 (1), 211244.Google Scholar
[9] Ambrose, D. M. (2014) The zero surface tension limit of two-dimensional interfacial Darcy flow. J. Math. Fluid Mech. 16 (1), 105143.Google Scholar
[10] Ambrose, D. M. & Siegel, M. (2017) Well-posedness of two-dimensional hydroelastic waves. Proc. Roy. Soc. Edinburgh Sect. A, 147 (3), 529570.Google Scholar
[11] Ambrose, D. M., Strauss, W. A. & Wright, J. D. (2016) Global bifurcation theory for periodic traveling interfacial gravity-capillary waves. Ann. Inst. Henri Poincaré: Anal. Non Linéaire 33 (4), 10811101.Google Scholar
[12] Baldi, P. & Toland, J. F. (2010) Bifurcation and secondary bifurcation of heavy periodic hydroelastic travelling waves. Interfaces Free Bound. 12 (1), 122.Google Scholar
[13] Baldi, P. & Toland, J. F. (2011) Steady periodic water waves under nonlinear elastic membranes. J. Reine Angew. Math. 652, 67112.Google Scholar
[14] Broyden, C. G. (1965) A class of methods for solving nonlinear simultaneous equations. Math. Comp. 19, 577593.Google Scholar
[15] Ehrnström, M., Escher, J. & Wahlén, E. (2011) Steady water waves with multiple critical layers. SIAM J. Math. Anal. 43 (3), 14361456.Google Scholar
[16] Guyenne, P. & Părău, E. I. (2012) Computations of fully nonlinear hydroelastic solitary waves on deep water. J. Fluid Mech. 713, 307329.Google Scholar
[17] Guyenne, P. & Părău, E. I. (2014) Finite-depth effects on solitary waves in a floating ice sheet. J. Fluids Struct. 49, 242262.Google Scholar
[18] Haupt, S. E. & Boyd, J. P. (1988) Modeling nonlinear resonance: A modification to the stokes' perturbation expansion. Wave Motion 10 (1), 8398.Google Scholar
[19] Helsing, J. & Ojala, R. (2008) On the evaluation of layer potentials close to their sources. J. Comp. Phys. 227 (5), 28992921.Google Scholar
[20] Hunter, J. K. & Nachtergaele, B. (2001) Applied Analysis, World Scientific Publishing, River Edge, NJ.Google Scholar
[21] Jones, M. & Toland, J. (1986) Symmetry and the bifurcation of capillary-gravity waves. Arch. Ration. Mech. Anal. 96 (1), 2953.Google Scholar
[22] Kielhöfer, H. (2012) Bifurcation Theory: An Introduction with Applications to Partial Differential Equations, 2nd ed., Vol. 156, Springer, New York.Google Scholar
[23] Liu, S. & Ambrose, D. M. (2017) Well-posedness of two-dimensional hydroelastic waves with mass. J. Differ. Equ. 262 (9), 46564699.Google Scholar
[24] Martin, C. I. & Matioc, B.-V. (2013) Existence of Wilton ripples for water waves with constant vorticity and capillary effects. SIAM J. Appl. Math. 73 (4), 15821595.Google Scholar
[25] McGoldrick, L. F. (1970) On Wilton's ripples: A special case of resonant interactions. J. Fluid Mech. 42 (1), 193200.Google Scholar
[26] Milewski, P. A., Vanden-Broeck, J.-M. & Wang, Z. (2011) Hydroelastic solitary waves in deep water. J. Fluid Mech. 679, 628640.Google Scholar
[27] Milewski, P. A., Vanden-Broeck, J.-M. & Wang, Z. (2013) Steady dark solitary flexural gravity waves. Proc. Roy. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 469 (2150), 20120485-1–20120485-8.Google Scholar
[28] Milewski, P. A. & Wang, Z. (2013) Three dimensional flexural-gravity waves. Stud. Appl. Math. 131 (2), 135148.Google Scholar
[29] Okamoto, H. & Shōji, M. (2001) The Mathematical Theory of Permanent Progressive Water-Waves, Vol. 20, World Scientific Publishing, River Edge, NJ.Google Scholar
[30] Plotnikov, P. I. & Toland, J. F. (2011) Modelling nonlinear hydroelastic waves. Philos. Trans. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 369 (1947), 29422956.Google Scholar
[31] Reeder, J. & Shinbrot, M. (1981) On Wilton ripples, I: Formal derivation of the phenomenon. Wave Motion 3 (2), 115135.Google Scholar
[32] Reeder, J. & Shinbrot, M. (1981) On Wilton ripples, II: Rigorous results. Arch. Ration. Mech. Anal. 77 (4), 321347.Google Scholar
[33] Shearer, M. (1980) Secondary bifurcation near a double eigenvalue. SIAM J. Math. Anal. 11 (2), 365389.Google Scholar
[34] Squire, V. A., Dugan, J. P., Wadhams, P., Rottier, P. J. & Liu, A. K. (1995) Of ocean waves and sea ice. Ann. Rev. Fluid Mech. 27 (1), 115168.Google Scholar
[35] Sulon, D. W. (2018) Analysis for Periodic Traveling Interfacial Hydroelastic Waves. PhD thesis, Drexel University.Google Scholar
[36] Toland, J. F. & Jones, M. C. W. (1985) The bifurcation and secondary bifurcation of capillary-gravity waves. Proc. Roy. Soc. Lond. Ser. A 399 (1817), 391417.Google Scholar
[37] Toland, J. F. (2007) Heavy hydroelastic travelling waves. Proc. Roy. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 463 (2085), 23712397.Google Scholar
[38] Toland, J. F. (2008) Steady periodic hydroelastic waves. Arch. Ration. Mech. Anal. 189 (2), 325362.Google Scholar
[39] Trichtchenko, O., Deconinck, B. & Wilkening, J. (2016) The instability of wilton ripples. Wave Motion 66, 147155.Google Scholar
[40] Trichtchenko, O., Milewksi, P., Parau, E. & Vanden-Broeck, J.-M. Stability of periodic flexural-gravity waves in two dimensions. Preprint.Google Scholar
[41] Vanden-Broeck, J.-M. (2002) Wilton ripples generated by a moving pressure distribution. J. Fluid Mech. 451, 193201.Google Scholar
[42] Wang, Z., Vanden-Broeck, J.-M. & Milewski, P. A. (2013) Two-dimensional flexural-gravity waves of finite amplitude in deep water. IMA J. Appl. Math. 78 (4), 750761.Google Scholar
[43] Wilton, J. R. (1915) LXXII. On ripples. Lond., Edinburgh, Dublin Philos. Mag. J. Sci. 29 (173), 688700.Google Scholar