Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-11T01:29:42.692Z Has data issue: false hasContentIssue false

Anterior cingulate morphology in people at genetic high-risk of schizophrenia

Published online by Cambridge University Press:  15 April 2020

S.M. Meredith
Affiliation:
Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, EH10 5HF Edinburgh, United Kingdom
N.C.A. Whyler
Affiliation:
Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, EH10 5HF Edinburgh, United Kingdom
A.C. Stanfield
Affiliation:
Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, EH10 5HF Edinburgh, United Kingdom
G. Chakirova*
Affiliation:
Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, EH10 5HF Edinburgh, United Kingdom
T.W.J. Moorhead
Affiliation:
Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, EH10 5HF Edinburgh, United Kingdom
D.E. Job
Affiliation:
Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, EH10 5HF Edinburgh, United Kingdom
S. Giles
Affiliation:
Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, EH10 5HF Edinburgh, United Kingdom
A.M. McIntosh
Affiliation:
Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, EH10 5HF Edinburgh, United Kingdom
E.C. Johnstone
Affiliation:
Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, EH10 5HF Edinburgh, United Kingdom
S.M. Lawrie
Affiliation:
Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, EH10 5HF Edinburgh, United Kingdom
*
*Corresponding author. Tel.: +44 131 537 6656. E-mail address: G.Chakirova@sms.ed.ac.uk (G. Chakirova).
Get access

Abstract

Background

Morphological abnormalities of the anterior cingulate (AC) occur in patients with schizophrenia and in symptomatic high-risk individuals, and may be predictive of subsequent psychosis. We investigated AC sulcal morphology in the Edinburgh High Risk Study cohort to see if such abnormalities are evident and predict psychosis in patients’ relatives. We also investigated the association of the cingulate sulcus (CS) and paracingulate sulcus (PCS) variants with intelligence quotient (IQ).

Patients and methods

We compared cingulate and paracingulate sulcal anatomy, using reliable standardised measurements, blind to group membership, in those at high genetic risk (n = 146), first episode patients (n = 34) and healthy controls (n = 36); and compared high-risk subjects who did (n = 17) or did not develop schizophrenia.

Results

Interruptions of the cingulate sulcus were more common in high-risk individuals and in those with schizophrenia, in both hemispheres, compared to controls. When separated by gender, these results were only present in males in the left hemisphere and only in females in the right hemisphere. A well-formed paracingulate sulcus was less common in high-risk participants and patients with schizophrenia, compared to controls; but this association was only present in males. These morphological variants of the paracingulate sulcus and the continuous cingulate sulcus were also associated with the higher IQ in male high-risk individuals.

Conclusions

An interrupted cingulate sulcus pattern in both males and females and paracingulate morphology in males are associated with increased genetic risk of schizophrenia. Associations between cingulate and paracingulate morphology and premorbid IQ scores provide evidence that intellectual ability could be related to particular cytoarchitectural brain regions. Given that these sulci develop in early fetal life, such findings presumably reflect early neurodevelopmental abnormalities of genetic origin, although environmental effects and interactions cannot be ruled out.

Type
Original articles
Copyright
Copyright © Elsevier Masson SAS 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander-Bloch, A.F., Gogtay, N., Meunier, D., Birn, R., Clasen, L., Lalonde, F.et al.Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia. Front Syst Neurosci. 2010; 4: 147.CrossRefGoogle ScholarPubMed
Armstrong, E., Schleicher, A., Omran, H., Curtis, M., Zilles, K.The ontogeny of human gyrification. Cereb Cortex. 1995; 5: 5663.CrossRefGoogle ScholarPubMed
Ashburner, J., Friston, K.J.Voxel-based morphometry – the methods. Neuroimage. 2000; 11: 805821.CrossRefGoogle ScholarPubMed
Barch, D.M., Braver, T.S., Akbudak, E., Conturo, T., Ollinger, J., Snyder, A.Anterior cingulate cortex and response conflict: effects of response modality and processing domain. Cereb Cortex. 2002; 11: 837848.CrossRefGoogle Scholar
Borgwardt, S.J., Riecher-Rössler, A., Dazzan, P., Chitnis, X., Aston, J., Drewe, M.et al.Regional gray matter volume abnormalities in the at risk mental state. Biol Psychiatry. 2007; 61: 11481156.CrossRefGoogle ScholarPubMed
Broome, M.R., Matthiasson, P., Fusar-Poli, P., Woolley, J.B., Johns, L.C., Tabraham, P.et al.Neural correlates of executive function and working memory in the “at-risk mental state”. Br J Psychiatry. 2009; 194: 2533.10.1192/bjp.bp.107.046789CrossRefGoogle ScholarPubMed
Byrne, M., Clafferty, B., Cosway, R., Grant, E., Hodges, A., Whalley, H.et al.Neuropsychology, genetic liability, and psychotic symptoms in those at high risk of schizophrenia. J Abnorm Psychol. 2003; 112: 3848.CrossRefGoogle ScholarPubMed
Cabeza, R., Nyberg, L.Imaging cognition II: an empirical review of 275 PET and fMRI studies. J Cogn Neurosci. 2000; 12: 147.CrossRefGoogle ScholarPubMed
Cannon, T.D., van Erp, T.G., Huttunen, M., Lonnqvist, J., Salonen, O., Valanne, L.et al.Regional gray matter, white matter, and cerebrospinal fluid distributions in schizophrenic patients, their siblings, and controls. Arch Gen Psychiatry. 1998; 55: 10841091.CrossRefGoogle ScholarPubMed
Crosson, B., Sadek, J.R., Bobholz, J.A., Gokcay, D., Mohr, C.M., Leonard, C.M.et al.Activity in the paracingulate and cingulate sulci during word generation: an fMRI study of functional anatomy. Cereb Cortex. 1999; 9: 307316.CrossRefGoogle ScholarPubMed
Curry, C.J., Stevenson, R.E., Aughton, D., Byrne, J., Carey, J.C., Cassidy, S.et al.Evaluation of mental retardation: recommendations of a consensus conference: American college of medical genetics. Am J Med Genet. 72 4: 1997 468477.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Fernandez-Duque, D., Posner, M.I.Brain imaging of attentional networks in normal and pathological states. J Clin Exp Neuropsychol. 2001; 23: 7493.CrossRefGoogle ScholarPubMed
Fornito, A., Whittle, S., Wood, S., Velakoulis, D., Pantelis, C., Yücel, M.The influence of sulcal variability on morphometry of the human anterior cingulate and paracingulate cortex. Neuroimage. 2006; 33: 843854.10.1016/j.neuroimage.2006.06.061CrossRefGoogle ScholarPubMed
Fornito, A., Yücel, M., Wood, S.J., Proffitt, P., McGorry, P.D., Velakoulis, D.et al.Morphology of the paracingulate sulcus and executive cognition in schizophrenia. Schizophr Res. 2006; 88: 192197.CrossRefGoogle ScholarPubMed
Fornito, A., Yücel, M., Dean, B., Wood, S., Pantelis, C.Anatomical abnormalities of the anterior cingulate cortex in schizophrenia: bridging the gap between neuroimaging and neuropathology. Schizophr Bull. 35 5: 2009 973993.CrossRefGoogle ScholarPubMed
Fornito, A., Yung, A., Wood, S., Phillips, L., Nelson, B., Cotton, S.et al.Anatomic abnormalities of the anterior cingulate cortex before psychosis onset: An MRI study of ultra-high-risk individuals. Biol Psychiatry. 64 9: 2008 758765.10.1016/j.biopsych.2008.05.032CrossRefGoogle ScholarPubMed
Frangou, S., Chitins, X., Williams, S.C.R.Mapping IQ and gray matter density in healthy young people. Neuroimage. 2004; 23: 800805.CrossRefGoogle ScholarPubMed
Fujiwara, H., Hirao, K., Namiki, C., Yamada, M., Shimizu, M., Fukuyama, H.et al.Anterior cingulate pathology and social cognition in schizophrenia: a study of gray matter, white matter and sulcal morphometry. Neuroimage. 36 4: 2007 12361245.CrossRefGoogle ScholarPubMed
Fujiwara, H., Namiki, C., Hirao, K., Miyata, J., Shimizu, M., Fukuyama, H.et al.Anterior and posterior cingulum abnormalities and their association with psychopathology in schizophrenia: a diffusion tensor imaging study. Schizophr Res. 95 1–3: 2007 215222.CrossRefGoogle ScholarPubMed
Goghari, V.M., Rehm, K., Carter, C.S., MacDonald, A.W.Regionally specific cortical thinning and gray matter abnormalities in the healthy relatives of schizophrenia patients. Cereb Cortex. 2007; 17: 415424.CrossRefGoogle ScholarPubMed
Goghari, V.M., Rehm, K., Carter, C.S., MacDonald, A.W.Sulcal thickness as a vulnerability indicator for schizophrenia. Br J Psychiatry. 2007; 191: 229233.CrossRefGoogle Scholar
Harris, J.M., Moorhead, T.W., Miller, P., McIntosh, A.M., Bonnici, H.M., Owens, D.G.et al.Increased prefrontal gyrification in a large high-risk cohort characterizes those who develop schizophrenia and reflects abnormal prefrontal development. Biol Psychiatry. 2007; 62: 722729.CrossRefGoogle Scholar
Harris, J.M., Whalley, H., Yates, S., Miller, P., Johnstone, E.C., Lawrie, S.M.Abnormal cortical folding in high-risk individuals: a predictor of the development of schizophrenia?. Biol Psychiatry. 2004; 56: 182189.CrossRefGoogle ScholarPubMed
Harris, J.M., Yates, S., Miller, P., Best, J.J., Johnstone, E.C., Lawrie, S.M.Gyrification in first episode schizophrenia: a morphometric study. Biol Psychiatry. 2004; 55: 141147.CrossRefGoogle ScholarPubMed
Hodges, A., Byrne, M., Grant, E., Johnstone, E.People at risk of schizophrenia. Sample characteristics of the first 100 cases in the Edinburgh high-risk study. Br J Psychiatry. 1999; 174: 547553.10.1192/bjp.174.6.547CrossRefGoogle ScholarPubMed
Huster, R.J., Westerhausen, R., Kreuder, F., Schweiger, E., Wittling, W.Morphologic asymmetry of the human anterior cingulate cortex. Neuroimage. 2007; 34: 888895.CrossRefGoogle ScholarPubMed
Huster, R.J., Wolters, C., Wollbrink, A., Schweiger, E., Wittling, W., Pantev, C.et al.Effects of anterior cingulate fissurization on cognitive control during stroop interference. Hum Brain Mapp. 30 4: 2009 12791289.CrossRefGoogle ScholarPubMed
Job, D.E., Whalley, H.C., Johnstone, E.C., Lawrie, S.M.Grey matter changes over time in high-risk subjects developing schizophrenia. Neuroimage. 2005; 25: 10231030.CrossRefGoogle ScholarPubMed
Job, D.E., Whalley, H.C., McConnell, S., Glabus, M., Johnstone, E.C., Lawrie, S.M.Structural gray matter differences between first episode schizophrenics and normal controls using voxel-based morphometry. Neuroimage. 2002; 17: 880889.CrossRefGoogle ScholarPubMed
Job, D.E., Whalley, H.C., McConnell, S., Glabus, M., Johnstone, E.C., Lawrie, S.M.Voxel-based morphometry of grey matter densities in subjects at high risk of schizophrenia. Schizophr Res. 2003; 64: 113.CrossRefGoogle ScholarPubMed
Johnstone, E.C., Abukmeil, S.S., Byrne, M., Clafferty, R., Grant, E., Hodges, A.et al.Edinburgh high-risk study – findings after four years: demographic, attainment and psychopathological issues. Schizophr Res. 2000; 46: 115.CrossRefGoogle ScholarPubMed
Koo, M.S., Levitt, J.J., Salisbury, D.F., Nakamura, M., Shenton, M.E., McCarley, R.W.A cross-sectional and longitudinal magnetic resonance imaging study of cingulate gyrus gray matter volume abnormalities in first episode schizophrenia and first episode affective psychosis. Arch Gen Psychiatry. 2008; 65: 746760.CrossRefGoogle ScholarPubMed
Lawrie, S.M., Abukmeil, S.S.Brain abnormality in schizophrenia. A systematic and quantitative review of volumetric magnetic resonance imaging studies. Br J Psychiatry. 1998; 172: 110120.CrossRefGoogle ScholarPubMed
Lawrie, S.M., McIntosh, A.M., Hall, J., Owens, D.G., Johnstone, E.C.Brain structure and function changes during the development of schizophrenia: the evidence from studies of subjects at increased genetic risk. Schizophr Bull. 2008; 34: 330340.CrossRefGoogle ScholarPubMed
Lawrie, S.M., Whalley, H.C., Abukmeil, S.S., Kestelman, J.N., Donnelly, L., Miller, P.et al.Brain structure, genetic liability, and psychotic symptoms in subjects at high risk of developing schizophrenia. Biol Psychiatry. 2001; 49: 811823.CrossRefGoogle ScholarPubMed
Lawrie, S.M., Whalley, H., Kestelman, J.N., Abukmeil, S.S., Byrne, M., Hodges, A.et al.Magnetic resonance imaging of brain in people at high risk of developing schizophrenia. Lancet. 1999; 353: 3033.CrossRefGoogle ScholarPubMed
Lencz, T., Cornblatt, B., Bilder, R.Neurodevelopmental models of schizophrenia: pathophysiologic synthesis and directions for intervention research. Psychopharmacol Bull. 2001; 35: 95125.Google ScholarPubMed
Leonard, C.M., Towler, S., Welcome, S., Chiarello, C.Paracingulate asymmetry in anterior and midcingulate cortex: sex differences and the effect of measurement technique. Brain Struct Funct. 2009; 213: 553569.CrossRefGoogle ScholarPubMed
Le Provost, J.B., Bartres-Faz, D., Paillere-Martinot, M.L., Artiges, E., Pappata, S., Recasens, C.et al.Paracingulate sulcus morphology in men with early-onset schizophrenia. Br J Psychiatry. 2003; 182: 228232.CrossRefGoogle ScholarPubMed
Lewis, D., Levitt, P.Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci. 2002; 25: 409432.CrossRefGoogle ScholarPubMed
Lie, C.-H., Specht, K., Marshall, J.C., Fink, G.R.Using fMRI to decompose the neural processes underlying the Wisconsin card sorting test. Neuroimage. 2006; 30: 10381049.CrossRefGoogle ScholarPubMed
Lynall, M.-E., Bassett, D.S., Kerwin, R., McKenna, P.J., Kitzbichler, M., Muller, U.et al.Functional connectivity and brain networks in schizophrenia. J Neurosci. 30 28: 2010 94779487.10.1523/JNEUROSCI.0333-10.2010CrossRefGoogle Scholar
Marquardt, R.K., Levitt, J.G., Blanton, R.E., Caplan, R., Asarnow, R., Siddarth, P.et al.Abnormal development of the anterior cingulate in childhood-onset schizophrenia: a preliminary quantitative MRI study. Psychiatry Res. 2005; 138: 221233.CrossRefGoogle ScholarPubMed
McGuffin, P., Farmer, A., Harvey, I.A polydiagnostic application of operational criteria in studies of psychotic illness. Development and reliability of the OPCRIT system. Arch Gen Psychiatry. 1991; 48: 764770.CrossRefGoogle ScholarPubMed
Miller, P., Byrne, M., Hodges, A., Lawrie, S.M., Owens, D.G.C., Johnstone, E.C.Schizotypal components in people at the high risk of developing schizophrenia: early findings from the Edinburgh high-risk study. Br J Psychiatry. 2002; 180: 179184.CrossRefGoogle ScholarPubMed
Munoz Maniega, S., Lymer, G.K., Bastin, M.E., Marjoram, D., Job, D.E., Moorhead, T.W.et al.A diffusion tensor MRI study of white matter integrity in subjects at high genetic risk of schizophrenia. Schizophr Res. 2008; 106: 132139.10.1016/j.schres.2008.09.016CrossRefGoogle ScholarPubMed
Noppeney, U., Price, C.J.A PET study of stimulus- and task-induced semantic processing. Neuroimage. 2002; 15: 927935.CrossRefGoogle ScholarPubMed
Pantelis, C., Velakoulis, D., McGorry, P.D., Wood, S.J., Suckling, J., Phillips, L.J.et al.Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet. 2003; 361: 281288.CrossRefGoogle ScholarPubMed
Pantelis, C., Yücel, M., Wood, S., McGorry, P., Velakoulis, D.Early and late neurodevelopmental disturbances in schizophrenia and their functional consequences. Aust N Z J Psychiatry. 2003; 37: 399406.CrossRefGoogle ScholarPubMed
Paus, T., Otaky, N., Caramanos, Z., MacDonald, D., Zijdenbos, A., D’Avirro, D.et al.In vivo morphometry of the intrasulcal gray matter in the human cingulate, paracingulate, and superior-rostral sulci: hemispheric asymmetries, gender differences and probability maps. J Comp Neurol. 1996; 376: 664673.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Paus, T.Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat Rev Neurosci. 2001; 2: 417424.CrossRefGoogle ScholarPubMed
Paus, T., Tomaiuolo, F., Otaky, N., MacDonald, D., Petrides, M., Atlas, J.et al.Human cingulate and paracingulate sulci: pattern, variability, asymmetry, and probabilistic map. Cereb Cortex. 1996; 6: 207214.CrossRefGoogle ScholarPubMed
Rahm, B., Opwis, K., Kaller, C.P., Spreer, J., Schwarzwald, R., Seifritz, E.et al.Tracking the subprocesses of decision-based action in the human frontal lobes. Neuroimage. 2006; 30: 656667.CrossRefGoogle ScholarPubMed
Silton, R.L., Heller, W., Towers, D.N., Engels, A.S., Spielberg, J.M., Edgar, J.C.et al.The time course of activity in dorsolateral prefrontal cortex and anterior cingulate cortex during top-down attentional control. Neuroimage. 2010; 50: 12921302.CrossRefGoogle ScholarPubMed
Slagle, T.A., Oliphant, M., Gross, S.J.Cingulate sulcus development in preterm infants. Pediatr Res. 1989; 26: 598602.CrossRefGoogle ScholarPubMed
Staal, W.G., Hulshoff Pol, H.E., Schnack, H.G., Hoogendoorn, M.L., Jellema, K., Kahn, R.S.Structural brain abnormalities in patients with schizophrenia and their healthy siblings. Am J Psychiatry. 2000; 157: 416421.CrossRefGoogle ScholarPubMed
Stanley, J., Gowen, E., Miall, R.C.How instructions modify perception: an fMRI study investigating brain areas involved in attributing human agency. Neuroimage. 2010; 52: 389400.CrossRefGoogle ScholarPubMed
Toro, R., Burnod, Y.A morphogenetic model for the development of cortical convolutions. Cereb Cortex. 2005; 15: 19001913.CrossRefGoogle ScholarPubMed
Van Essen, D.C.A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature. 1997; 385: 313318.CrossRefGoogle ScholarPubMed
Vogt, B.A., Nimchinsky, E.A., Vogt, L.J., Hof, P.R.Human cingulate cortex: surface features, flat maps, and cytoarchitecture. J Comp Neurol. 1995; 359: 490506.CrossRefGoogle ScholarPubMed
Whalley, H.C., Kestelman, J.N., Rimmington, J.E., Kelso, A., Abukmeil, S.S., Best, J.J.K.et al.Methodological issues in volumetric magnetic resonance imaging of the brain in the Edinburgh high-risk project. Psychiatr Res. 1999; 91: 3144.CrossRefGoogle ScholarPubMed
Wing, J., Cooper, J., Sartorius, N.The Description and classification of psychiatric symptoms. An instruction manual for the PSE and Catego systems. Cambridge, UK: Cambridge University Press; 1974.Google Scholar
Wood, S., Yücel, M., Velakoulis, D., Phillips, L., Yung, A., Brewer, W.et al.Hippocampal and anterior cingulate morphology in subjects at ultra-high-risk for psychosis: the role of family history of psychotic illness. Schizophr Res. 2005; 75: 295301.CrossRefGoogle ScholarPubMed
Wright, I.C., Rabe-Hesketh, S., Woodruff, P.W., David, A.S., Murray, R.M., Bullmore, E.T.Meta-analysis of regional brain volumes in schizophrenia. Am J Psychiatry. 2000; 157: 1625.CrossRefGoogle Scholar
Yücel, M., Stuart, G., Maruff, P., Velakoulis, D., Crowe, S., Savage, G.et al.Hemispheric and gender-related differences in the gross morphology of the anterior cingulate/paracingulate cortex in normal volunteers: an MRI morphometric study. Cereb Cortex. 2001; 11: 1725.CrossRefGoogle Scholar
Yücel, M., Stuart, G., Maruff, P., Wood, S., Savage, G., Smith, D.et al.Paracingulate morphologic differences in males with established schizophrenia: a magnetic resonance imaging morphometric study. Biol Psychiatry. 2002; 52: 1523.CrossRefGoogle ScholarPubMed
Yücel, M., Wood, S., Phillips, L., Stuart, G., Smith, D., Yung, A.et al.Morphology of the anterior cingulate cortex in young men at ultra-high risk of developing a psychotic illness. Br J Psychiatry. 2003; 182: 518524.CrossRefGoogle ScholarPubMed
Zorrilla, L.T., Cannon, T.D., Kronenberg, S., Mednick, S.A., Schulsinger, F., Parnas, J.et al.Structural brain abnormalities in schizophrenia: a family study. Biol Psychiatry. 1997; 42: 10801086.CrossRefGoogle ScholarPubMed
Submit a response

Comments

No Comments have been published for this article.