Hostname: page-component-7bb8b95d7b-pwrkn Total loading time: 0 Render date: 2024-09-14T12:32:39.022Z Has data issue: false hasContentIssue false

Exchangeable molybdenum concentration in lowland paddy fields of Sri Lanka as affected by the differences in agro-climatic zones, soil orders, and water sources

Published online by Cambridge University Press:  12 September 2024

Indeera Hettiarachchi
Affiliation:
Department of Crop Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
Mojith Ariyaratne
Affiliation:
Department of Crop Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
Upul Rathnayake
Affiliation:
Rice Research and Development Institute, Department of Agriculture, Batalagoda, Sri Lanka
Ranga Madushan
Affiliation:
Department of Crop Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
Harsha Kadupitiya
Affiliation:
Natural Resources Management Centre, Department of Agriculture, Peradeniya, Sri Lanka
Rohana Chandrajith
Affiliation:
Department of Geology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
Lalith Suriyagoda*
Affiliation:
Department of Crop Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
*
Corresponding author: Lalith Suriyagoda; Email: lalith.suriyagoda@agri.pdn.ac.lk

Summary

Molybdenum (Mo) is an essential micronutrient for plants. However, Mo status in Sri Lankan paddy fields as affected by climate and soil is not known. This study was conducted to (i) determine the distribution of exchangeable Mo concentration, and (ii) examine the interactive effects of the agro-climatic zone (ACZ), soil order, water source, and their interactions in determining exchangeable Mo concentration in lowland paddy fields of Sri Lanka. A total of 3,719 soil samples representing six ACZs, six soil orders, and three water sources were collected using a stratified random sampling approach. Exchangeable Mo concentration was determined after extracting in 0.01 M CaCl2 solution and detected using inductively coupled plasma-mass spectrometry. Soil Mo concentration varied in the range of 0.01 to 245 µg kg−1 with a mean of 25.9 µg kg−1. Samples collected from the Wet zone, particularly Wet zone Low country, had higher Mo concentrations than those reported in other ACZs. Among the soil orders tested, Histosols had a higher Mo concentration while that in other soil orders was similar. Rainfed paddy fields had more Mo than supplementary irrigated paddy fields. Spatial maps were generated to visualise the geographical variation in soil Mo concentration. Due to the presence of a spatial heterogeneity of exchangeable Mo concentration, it is important to implement ACZ, soil, and water source-based strategies to improve Mo status in Sri Lankan paddy fields.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AgStat. (2021) Agricultural Statistics. Sri Lanka: Socio Economics and Planning Centre Department of Agriculture Peradeniya.Google Scholar
Anderson, A.J. (1956) Molybdenum as a fertilizer. In Norman, A.G. (eds.), Advances in Agronomy. Washington, DC: Academic Press, pp. 163202.Google Scholar
Anonymous. (2007) National Atlas of Sri Lanka, 2nd edn. Sri Lanka: Survey Department.Google Scholar
Balasooriya, S., Diyabalanage, S., Yatigammana, S. K., Ileperuma, O. A. and Chandrajith, R. (2021) Major and trace elements in rice paddy soils in Sri Lanka with special emphasis on regions with endemic chronic kidney disease of undetermined origin. Environmental Geochemistry and Health 44, 18411855.CrossRefGoogle ScholarPubMed
Bockheim, J.G. and Hartemink, A.E. (2017) Alfisols. In The Soils of Wisconsin. World Soils Book Series. Cham: Springer, pp. 129147.Google Scholar
Bouchard, D.C., Williams, M.K. and Surampalli, R.Y. (1992) Nitrate contamination of groundwater: sources and potential health effects. Journal-American Water Works Association 84, 8590.CrossRefGoogle Scholar
Dassanayake, A.R., Somasiri, L.L.W. and Mapa, R.B. (2020) Major soils of the intermediate soils and their classification. In Mapa, R.B. (eds.), The Soils of Sri Lanka. World Soils Book Series. Cham: Springer, pp. 69 82.CrossRefGoogle Scholar
DOA. (2020) Rice Cultivation. Sri Lanka: Rice Research and Development Institute, Department of Agriculture.Google Scholar
Everett, K.R. (1983) Histosols. In Wilding, L.P., Smeck, N.E. and Hall, G.F. (eds.), Developments in Soil Science. Netherlands: Elsevier, pp. 153.Google Scholar
Fageria, N.K. (2013) Mineral Nutrition of Rice. Boca Raton: CRC Press.CrossRefGoogle Scholar
Ferreiro, E.A., Helmy, A.K. and De Bussetti, S.G. (1985) Molybdate sorption by oxides of aluminium and iron. Journal of Plant Nutrition and Soil Science 148, 559566.CrossRefGoogle Scholar
Goldberg, S., Forster, H.S. and Godfrey, C.L. (1996) Molybdenum adsorption on oxides, clay minerals, and soils. Soil Science Society of America Journal 60, 425432.CrossRefGoogle Scholar
Houba, V.J.G., Temminghoff, E.J.M., Gaikhorst, G.A. and Vark, W. (2000) Soil analysis procedures using 0.01 M calcium chloride as extraction reagent. Communications in Soil Science and Plant Analysis 31, 12991396.CrossRefGoogle Scholar
Imbulana, L. (2006) Water allocation between agriculture and hydropower: a case study of Kalthota irrigation scheme, Sri Lanka. In Mollinga, P.P., Dixit, A. and Athukorala, K. (eds.), Integrated Water Resources Management: Global Theory, Emerging Practice and Local Needs. Sage Publications, pp. 219248.Google Scholar
Imran, M., Hussain, S., El-Esawi, M.A., Rana, M.S., Saleem, M.H., Riaz, M., Ashraf, U., Potcho, M.P., Duan, M., Rajput, I.A. and Tang, X. (2020) Molybdenum supply alleviates the cadmium toxicity in fragrant rice by modulating oxidative stress and antioxidant gene expression. Biomolecules 10, 1582.CrossRefGoogle ScholarPubMed
Indraratne, S.P. (2020) Soil mineralogy. In Mapa, R.B. (eds.), The Soils of Sri Lanka. World Soils Book Series. Cham: Springer, pp. 3547.CrossRefGoogle Scholar
Jonmaire, P. (2015) Molybdenum. In Harbison, R.D., Bourgeois, M.M. and Johnson, G.T. (eds.), Hamilton and Hardy’s Industrial Toxicology. New Jersey, U.S: Wiley, pp. 167172 Google Scholar
Kabata-Pendias, A. and Pendias, H. (2000) Trace Elements in Soils and Plants. 3rd ed. Boca Raton: CRC press.CrossRefGoogle Scholar
Kadupitiya, H.K., Madushan, R.N., Rathnayake, U.K., Thilakasiri, R., Dissanayaka, S.B., Ariyaratne, M., Marambe, B., Nijamudeen, M.S., Sirisena, D. and Suriyagoda, L. (2021) Use of smartphones for rapid location tracking in mega scale soil sampling. Open Journal of Applied Sciences 11, 239253.CrossRefGoogle Scholar
Kadupitiya, H.K., Madushan, R.N.D., Gunawardhane, D., Sirisena, D., Rathnayake, R., Dissanayaka, D.M.S.B., Ariyaratne, M., Marambe, B. and Suriyagoda, L. (2022) Mapping productivity-related spatial characteristics in rice-based cropping systems in Sri Lanka. Journal of Geovisualization and Spatial Analysis 26. https://doi.org/10.1007/s41651-022-00122-0.Google Scholar
Kaiser, B.N., Gridley, K.L., Brady, J.N., Phillips, T. and Tyerman, S.D. (2005) The role of molybdenum in agricultural plant production. Annals of Botany 96, 745754.CrossRefGoogle ScholarPubMed
Lang, F. and Kaupenjohann, M. (2003) Immobilisation of molybdate by iron oxides: effects of organic coatings. Geoderma 113, 3146.CrossRefGoogle Scholar
Lindsay, W.L. (1979) Chemical Equilibria in Soils. New Jersey, U.S: John Wiley and Sons Ltd.Google Scholar
Manuel, T-J., Alejandro, C-A., Angel, L., Aurora, G. and Emilio, F. (2018) Roles of molybdenum in plants and improvement of its acquisition and use efficiency. In: Plant Micronutrient Use Efficiency. Washington, DC: Academic Press, pp. 137159.Google Scholar
Marks, J.A., Perakis, S.S., King, E.K. and Pett-Ridge, J. (2015) Soil organic matter regulates molybdenum storage and mobility in forests. Biogeochemistry 125, 167183.CrossRefGoogle Scholar
Nayyar, V.K., Arora, C.L. and Kataki, P.K. (2001) Management of soil micronutrient deficiencies in the rice-wheat cropping system. Journal of Crop Production 4, 87131.CrossRefGoogle Scholar
Panabokke, C.R. (1978) Rice soils of Sri Lanka. Soil and Rice, 1935.Google Scholar
Rana, M.S., Bhantana, P., Imran, M., Saleem, M.H., Moussa, M.G., Khan, Z., Khan, I., Alam, M., Abbas, M., Binyamin, R., Afzal, J., Syaifudin, M., Ud Din, I., Younas, M., Ahmad, I., Shah, M.A. and Hu, C. (2020) Molybdenum potential vital role in plants metabolism for optimizing the growth and development. Annals of Environmental Science and Toxicology 4, 3244.Google Scholar
Rashid, A. and Ryan, J. (2008) Micronutrient constraints to crop production in the near east. In Alloway, B.J. (eds.), Micronutrient Deficiencies in Global Crop Production. Dordrecht: Springer, pp. 149180.CrossRefGoogle Scholar
Reddy, K.J., Munn, L.C. and Wang, L. (1997) Chemistry and mineralogy of molybdenum in soils. In Gupta, U.C. (eds.), Molybdenum in Agriculture. Cambridge: Cambridge University Press, pp. 422.CrossRefGoogle Scholar
Riley, M.M., Robson, A.D., Gartrell, J.W. and Jeffery, R.C. (1987) The absence of leaching of molybdenum in acidic soils from Western Australia. Soil Research 25, 179184.CrossRefGoogle Scholar
Shi, Z., Zhang, J., Wang, F., Li, K., Yuan, W. and Liu, J. (2018) Arbuscular mycorrhizal inoculation increases molybdenum accumulation but decreases molybdenum toxicity in maize plants grown in polluted soil. RSC Advances 8, 3706937076.CrossRefGoogle ScholarPubMed
Stout, P.R., Meagher, W.R., Pearson, G.A. and Johnson, C.M. (1951) Molybdenum nutrition of crop plants: I. The influence of phosphate and sulfate on the absorption of molybdenum from soils and solution cultures. Plant and Soil 3, 5187.CrossRefGoogle Scholar
Sun, W. and Selim, H. (2020) Fate and transport of molybdenum in soils: Kinetic modeling. Advances in Agronomy 164, 5192.CrossRefGoogle Scholar
Suriyagoda, L.D.B. (2022) Rice production in nutrient-limited soils: strategies for improving crop productivity and land sustainability. Journal of the National Science Foundation of Sri Lanka 50, 521539.CrossRefGoogle Scholar
Van Erp, P.J., Houba, V.J.G., Reijneveld, J.A. and Van Beusichem, M.L. (2001) Relationship between magnesium extracted by 0.01 M calcium chloride extraction procedure and conventional procedures. Communications in Soil Science and Plant Analysis 32, 12, 1–18.CrossRefGoogle Scholar
Wang, Y., Ying, H., Yin, Y., Zheng, H. and Cui, Z. (2019) Estimating soil nitrate leaching of nitrogen fertilizer from global meta-analysis. Science of the Total Environment 657, 96102.CrossRefGoogle ScholarPubMed
Zbíral, J. and Němec, P. (2005) Comparison of Mehlich 2, Mehlich 3, CAL, Schachtschabel, 0.01 M CaCl2 and Aqua Regia extractants for determination of potassium in soils. Communications in Soil Science and Plant Analysis 36, 795803.CrossRefGoogle Scholar