Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-29T08:46:11.217Z Has data issue: false hasContentIssue false

GROWTH AND MINERAL COMPOSITION OF TWO LINEAGES OF THE SEA ASPARAGUS SARCOCORNIA AMBIGUA IRRIGATED WITH SHRIMP FARM SALINE EFFLUENT

Published online by Cambridge University Press:  09 March 2017

KENNIA BRUM DONCATO
Affiliation:
Programa de Pós-Graduação em Aquicultura, Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Av. Itália, km 8, Bairro Carreiros, 96203-900 Rio Grande, RS, Brazil
CÉSAR SERRA BONIFÁCIO COSTA*
Affiliation:
Laboratório de Biotecnologia de Halófitas, Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Av. Itália, km 8, Bairro Carreiros, 96203-900 Rio Grande, RS, Brazil
*
§Corresponding author. Email: docosta@furg.br

Summary

The sea asparagus Sarcocornia ambigua is a widespread coastal halophyte of South America that has a recent history of successful cultivation with saline shrimp farm effluent and nutritional quality for human and animal diets, as well as chemical characteristics for biofuel production. Two morphologically distinct lineages (BTH1 and BTH2) of S. ambigua were obtained by crossing pure lineages of natural biotypes. The growth and biomass production of f3 and f4 progenies of S. ambigua lineages were evaluated, as well as their macro- and micro-mineral components were investigated by spectrophotometry. The BTH2 lineage showed a 43% higher shoot growth rate, a two times faster branch production and a higher biomass allocation to shoots than in BTH1. BTH1 shoots showed higher concentrations of N, K and Cu than did the BTH2 progenies. The average levels of N, K, P and Ca in BTH1-f4 shoots were higher than those in wild plants of S. ambigua and ranked in the mid-upper range of these mineral contents in other species of the subfamily Salicorniodeae and gourmet vegetables. The mineral profile of the two selected lineages of S. ambigua confirms high nutritional quality of these plants for humans and animals. They can be presented as alternatives to food production with saline effluent from aquaculture on the temperate and tropical coast and/or inland salt-affected soils of South America.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, J. B. and Bate, G. C. (1994). The effect of salinity and inundation on the estuarine macrophyte Sarcocornia perennis (Mill.) A.J. Scott. Aquatic Botany 47:341348.Google Scholar
Agawu, E. T. (2012). Comparison between Salicornia and Sarcocornia ecotypes to optimize yield for vegetable production applying highly saline irrigation. M.Sc. thesis, Ben-Gurion University of the Negev.Google Scholar
Azevedo, A. M. G. (2000). Habitats, associações vegetais e fenologia das plantas das marismas da Ilha da Pólvora, estuário da Lagoa dos Patos. M.Sc. thesis, Universidade Federal do Rio Grande.Google Scholar
Bertin, R. L., Gonzaga, L. V., Borges, G. S. C., Azevedo, M. S., Maltez, H. F., Heller, M., Micke, G. A., Tavares, L. B. B. and Fett, R. (2014). Nutrient composition and, identification/quantification of major phenolic compounds in Sarcocornia ambigua (Amaranthaceae) using HPLC–ESI-MS/MS. Food Research International 55:404411.Google Scholar
Bratsch, A. (2014). Specialty Crop Profile: Asparagus, 438–102. Virginia Cooperative Extension Publication.Google Scholar
Costa, C. S. B. (2006). A salicornia: Uma planta que pode ser utilizada no cultivo integrado com o camarão. Panorama da Aquicultura 98:2833.Google Scholar
Costa, C. S. B., Bonilla, O. H., Oliveira, R. D., Alves, P. R., Lopes, E. F. and Lucas, D. S. (2014a). Influence of different saline irrigation regimes on soil electrical conductivity and crop yield of Sarcocornia ambigua in the semi-arid region of NE Brazil. In Annals of the II INOVAGRI International Meeting, 32343243. Fortaleza, Brazil: Instituto de Pesquisa e Inovação na Agricultura Irrigada-INOVAGRI.Google Scholar
Costa, C. S. B., Vicenti, J. R. M., Morón-Villarreyes, J. A., Caldas, S., Cardoso, L. V., Freitas, R. F. and D'oca, M. G. M. (2014b). Extraction and characterization of lipids from Sarcocornia ambigua meal: A halophyte biomass produced with shrimp farm effluent irrigation. Anais da Academia Brasileira de Ciências 86:935943.Google Scholar
Curado, G., Grewell, B. J., Figueroa, E. and Castillo, J. M. (2014). Effectiveness of the aquatic halophyte Sarcocornia perennis spp. perennis as a biotool for ecological restoration of salt. Water, Air, & Soil Pollution 225:114.Google Scholar
Davy, A.J., Bishop, G.F., Mossman, H., Redondo-Goméz, S., Castillo, J.M., Castellanos, E.M., Luque, T. and Figueroa, M.E. (2006). Sarcocornia perennis (Miller) A. J. Scott – Biological Flora of the British Isles. Journal of Ecology 94:10351048.Google Scholar
Dias, G. (2015). Sal verde e mais saudável. Agropecuária Catarinense 28:2931.Google Scholar
Eslamzadeh, T. (2006). Salicornia europeae, a bioaccumulator in Maharloo Salt Lake Region. International Journal of Soil Science 1:7580.CrossRefGoogle Scholar
Flowers, T. J., Hajibagheri, M. A. and Clipson, N. J. W. (1986). Halophytes. The Quarterly Review of Biology 61:313337.CrossRefGoogle Scholar
Freitas, R. F. and Costa, C. S. B. (2014). Germination responses to salt stress of two intertidal populations of the perennial glasswort Sarcocornia ambigua. Aquatic Botany 117:1217.Google Scholar
Gorham, A. V. and Gorham, E. (1955). Iron, manganese, ash, and nitrogen in some plants from salt marsh and shingle habitats. Annals of Botany 19:571577.CrossRefGoogle Scholar
Greis, G. (2009). Cultivo de Salicornia gaudichaudiana Moq. irrigada com efluente de camarão no clima temperado na costa sul do Brasil. M.Sc. thesis, Universidade Federal do Rio Grande.Google Scholar
Katschnig, D., Broekman, E. and Rozema, J. (2013). Salt tolerance in the halophyte Salicornia dolichostachya Moss: Growth, morphology and physiology. Environmental and Experimental Botany 92:3242.Google Scholar
Lu, D., Zhang, M., Wang, S., Cai, J., Zhou, X. and Zhu, C. (2010). Nutritional characterization and changes in quality of Salicornia bigelovii Torr. during storage. LWT – Food Science and Technology 43:519524.CrossRefGoogle Scholar
Luque, C. J., Castellanos, E. M., Castillo, J. M., Gonzalez, M., Gonzalez-Vilches, M. C. and Figueroa, M. E. (1999). Metals in halophytes of a contaminated estuary (Odiel Saltmarshes, SW Spain). Marine Pollution Bulletin 38:4951.Google Scholar
Makus, D. J. (1994). Mineral nutrient composition of green and white asparagus spears. HortScience 29:14681469.Google Scholar
Mayer, A. M. (1997). Historical changes in the mineral content of fruits and vegetables. British Food Journal 99:207211.Google Scholar
Medina, E., Francisco, A. M., Wingfield, R. and Casañas, O. L. (2008). Halofitismo en plantas de la costa caribe de Venezuela: Halófitas y halotolerantes. Acta Botanica Venezuelica 31:4980.Google Scholar
Milić, D., Luković, J., Ninkov, J., Zeremski-Škoric, T., Zorić, L., Vasin, J. and Milić, S. (2012). Heavy metal content in halophytic plants from inland and maritime saline areas. Central European Journal of Biology 7:307317.Google Scholar
Norman, H. C., Masters, D. G. and Barrett-Lennard, E. G. (2013). Halophytes as forages in saline landscapes: Interactions between plant genotype and environment change their feeding value to ruminants. Environmental and Experimental Botany 92:96109.Google Scholar
Redondo-Gómez, S., Wharmby, C., Castillo, J. M., Mateos-Naranjo, E., Luque, C. J., Cires, A., Luque, T., Davy, A. J. and Figueroa, M. E. (2006). Growth and photosynthetic responses to salinity in an extreme halophyte, Sarcocornia fruticosa. Physiologia Plantarum 128:116124.Google Scholar
Sheikhi, J. and Ronaghi, A. (2012). Growth and macro and micronutrients concentration in spinach (Spinacia oleracea L.) as influenced by salinity and nitrogen rates. International Research Journal of Applied and Basic Sciences 3:770777.Google Scholar
Singh, D., Buhmann, A. K., Flowers, T. J., Seal, C. E. and Papenbrock, J. (2014). Salicornia as a crop plant in temperate regions: Selection of genetically characterized ecotypes and optimization of their cultivation conditions. AoB Plants 6:120.Google Scholar
Smillie, C. (2015). Salicornia spp. as a biomonitor of Cu and Zn in salt marsh sediments. Ecological Indicators 56:7078.Google Scholar
Tedesco, M. J., Gianello, C., Bissani, C. A., Bohnen, H. and Volkweiss, S. J. (1995). Análise de solo, plantas e outros materiais. Porto Alegre, Brazil: Departamento de Solos, Universidade Federal do Rio Grande do Sul.Google Scholar
Timm, T. G., Silva, A. A. Jr., Bertin, R. L. and Tavares, L. B. B. (2015). Processamento de conservas de Sarcocornia perennis. Agropecuária Catarinense 28:97102.Google Scholar
Ushakova, S. A., Kovaleva, N. P., Gribovskaya, I. V., Dolgushev, V. A. and Tikhomirova, N. A. (2005). Effect of NaCl concentration on productivity and mineral composition of Salicornia europaea as a potential crop for utilization NaCl in LSS. Advances in Space Research 36:13491353.Google Scholar
Ventura, Y. and Sagi, M. (2013). Halophyte crop cultivation: The case of Salicornia and Sarcocornia. Environmental and Experimental Botany 92:144153.Google Scholar
Ventura, Y., Eshel, A., Pasternak, D. and Sagi, M. (2015). The development of halophyte-based agriculture: Past and present. Annals of Botany 115:327331.Google Scholar
Ventura, Y., Wuddineh, W. A., Myrzabayeva, M., Alikulov, Z., Khozin-Goldberg, I., Shpigel, M., Samocha, T. M. and Sagi, M. (2011a). Effect of seawater concentration on the productivity and nutritional value of annual Salicornia and perennial Sarcocornia halophytes as leafy vegetable crops. Scientia Horticulturae 128:189196.CrossRefGoogle Scholar
Ventura, Y., Wuddineh, W. A., Shpigel, M., Samocha, T. M., Klim, B. C., Cohen, S., Shemer, Z., Santos, R. and Sagi, M. (2011b). Effects of day length on flowering and yield production of Salicornia and Sarcocornia species. Scientia Horticulturae 130:510516.Google Scholar
Zar, J. H. (2010). Biostatistical Analysis. Upper Saddle River, USA: Prentice-Hall.Google Scholar
Zerai, D. B., Glenn, E. P., Chatervedi, R., Lu, Z., Mamood, A. N., Nelson, S. G. and Ray, D. T. (2010). Potential for the improvement of Salicornia bigelovii through selective breeding. Ecological Engineering 36:730739.CrossRefGoogle Scholar