Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-29T10:37:18.353Z Has data issue: false hasContentIssue false

Nutritional and nutraceutical characteristicsof white and red Pithecellobium dulce (Roxb.) Benth fruits

Published online by Cambridge University Press:  12 September 2013

Get access

Abstract

 Introduction. Pithecellobium dulce is a legume native to tropical America that produces edible arils which can be white or red. The plant is also grown in Asia and, to date, predominantly fruits produced in Asia have been the subject of scientific studies. We studied white and red arils produced in America. Materials and methods. White aril and red aril fruits were evaluated in an array of reagent-based assays to determine nutritional and nutraceutical properties. Results and discussion. White arils and red arils showed similar physicochemical characteristics, with high content of vitamin C (79.7–82.6 mg·100 g–1 fresh weight) and dietary fiber (5.83–6.12% fw). The anthocyanin content of red arils (29.5 mg·100 g–1 fw, as cyanidin-3-glucoside equivalents) was similar to that of strawberry. Total phenolics (517 mg·100 g–1 fw, as gallic acid equivalents) and antioxidant activities (ABTS, 224 mg; DPPH, 223 mg, as vitamin C equivalents) of red arils were 1.3 times higher than those in white arils. The methanolic extract of red arils showed a higher α-glucosidase inhibition (IC50 2.9 mg·mL–1) than acarbose (IC50 4.9 mg·mL–1). The methanolic extract [(50, 100 and 500) μg per tube] of red and white arils showed positive-strong antimutagenic activities (inhibition in the range 25–70%) in the assay (Salmonella typhimurium YG1024 strain, 1-nitropyrene as mutagen, 200 ng per tube). We are reporting for the first time remarkably high characteristics (i.e., antioxidant, inhibition of α-amylase and α-glucosidase and content of dietary fiber) of P. dulce fruits, mainly of the red ones; properties which combined permit us to suggest that consumption of these fruits could have beneficial health effects in people with diabetes.

Type
Original article
Copyright
© 2013 Cirad/EDP Sciences

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kaur, C., Kapoor, H.C., Antioxidants in fruits and vegetables - the millennium's health, Int. J. Food Sci. Technol. 36 (2001) 703725.CrossRefGoogle Scholar
Pinto M.S., Shetty K., Health benefits of berries for potential management of hyperglycemia and hypertension, in: Flavor and health benefits of small fruits, ACS Symp. Ser., Am. Chem. Soc., Wash. D.C., U.S.A., 2010.
Anon., The global burden of disease: 2004 update, World Health Organ. (WHO), Switz., 2008.
Pennington T.D., Sarukhán J., Árboles tropicales de México. Manual para la identificación de las principales especies, Univ. Nac. Autón. Méx., Fac. Cienc. Econ., Méx. D.F., 2005.
Parrotta J., Pithecellobium dulce (Roxb.) Benth. Guamuchil, USDA For. Serv., South. For. Exp. Stn., Inst. Trop. For., New-Orleans, La., U.S.A., 1991.
Monnroy, R., Colín, H., El guamúchil Phithecellobium dulce (Roxb.) Benth, un ejemplo de uso múltiple, Madera Boques 10 (2004) 3553.CrossRefGoogle Scholar
Sagumaran M., Vetrichelvan T., Pithecellobium dulce Benth - a review, Pharm. Rev. 6 (2008).
Gambhir, N.V., Bhaskar, V.V., HTPLC analysis of vitamin C from Pithecellobium dulce, Benth (Fabaceae), J. Pharm. Res. 4 (2011) 11971198.Google Scholar
Manna P., Bhattacharyya S., Das J., Ghosh J., Sil P.C., Phytomedicinal role of Pithecellobium dulce against CCl(4)-mediated hepatic oxidative impairments and necrotic cell death, Evid. Based Complement Altern. Med. (2011) 1–17.
Megala, J., Geetha, A., Free radical-scavenging and H+, K+-ATPase inhibition activities of Pithecellobium dulce, Food Chem. 121 (2010) 11201128.CrossRefGoogle Scholar
Harborne J.B., Phytochemical methods, Chapman and Hall, N. Y., U.S.A., 1984.
Anon., Official methods of analysis, Assoc. Off. Anal. Chem. Inc. (AOAC), Va., U.S.A., 1990.
Gökmen, V., Kahraman, N., Demir, N., Acar, J., Enzymatically validated liquid chromatographic method for the determination of ascorbic and dehydroascorbic acids in fruit and vegetables, J. Chromatogr. A 881 (2000) 309316.CrossRefGoogle ScholarPubMed
Alcántar-González G., Sandoval-Villa M., Procedimientos analíticos, in: Alcántar-González G., Sandoval-Villa M. (Eds.), Manual de análisis químicos de tejido vegetal, Soc. Mex. Cienc. Suelo, A.C., Méx., D.F., 1999.
Pío-León, J.F., López-Angulo, G., Paredes-López, O., Uribe-Beltran, M.d.J., Díaz-Camacho, S.P., Delgado-Vargas, F., Physicochemical, nutritional and antibacterial characteristics of the fruit of Bromelia pinguin L., Plant Foods Hum. Nutr. 64 (2009) 181187.CrossRefGoogle ScholarPubMed
Park, P.W., Goins, R.E., In situ preparation of fatty acid methyl esters for analysis of fatty acid composition in foods, J. Am. Oil Chem. Soc. 59 (1994) 12621266.Google Scholar
Waterhouse A.L., Determination of total phenolics, in: Wrolstad R.E., Acree T.E., An H., Decker E.A., Penner M.H., Reid D.S., Schwartz S.J., Shoemaker C.F., Smith D.M., Sporns P. (Eds.), Current protocols in food analytical chemistry, John, Wiley & Sons, Inc., Hoboke,; New-Jersey, U.S.A., 2002.
Wolfe, K., Wu, X., Liu, R.H., Antioxidant activity of apple peels, J. Agric. Food Chem. 51 (2003) 609614.CrossRefGoogle ScholarPubMed
Price, M., van Scoyoc, S., Butler, L., A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain, J. Agric. Food Chem. 26 (1978) 12141218.CrossRefGoogle Scholar
Giusti M., Wrolstad R.E., Characterization and measurement of anthocyanins by UV-visible spectroscopy, in: Wrolstad R.E., Acree T.E., An H., Decker E.A., Penner M.H., Reid D.S., Schwartz S.J., Shoemaker C.F., Smith D.M., Sporns P. (Eds.), Current protocols in food analytical chemistry, John, Wiley & Sons, Inc., Wash., D.C., U.S.A., 2002.
Liu, L.X., Sun, Y., Laura, T., Liang, X.F., Ye, H., Zeng, X.X., Determination of polyphenolic content and antioxidant activity of kudingcha made from Ilex kudingcha C.J. Tseng, Food Chem. 112 (2009) 3541.CrossRefGoogle Scholar
Lim, Y.Y., Lim, T.T., Tee, J.J., Antioxidant properties of several tropical fruits: A comparative study, Food Chem. 107 (2007) 10031008.CrossRefGoogle Scholar
Pinto, M.S., Kwon, Y.I., Apostolidis, E., Lajolo, F.M., Genovese, M.I., Shetty, K., Functionality of bioactive compounds in Brazilian strawberry (Fragaria × ananassa Duch.) cultivars: evaluation of hyperglycemia and hypertension potential using in vitro models, J. Agric. Food Chem. 56 (2008) 43864392.CrossRefGoogle Scholar
Kim, J.S., Hyun, T.K., Kim, M.J., The inhibitory effects of ethanol extracts from sorghum, foxtail millet and proso millet on a-glucosidase and a-amylase activities, Food Chem. 124 (2011) 16471651.CrossRefGoogle Scholar
Kado, N.Y., Langley, D., Eisenstadt, E., A simple modification of the Salmonella liquid incubation assay. Increased sensitivity for detecting mutagens in human urine, Mutat. Res. 121 (1983) 2532.CrossRefGoogle ScholarPubMed
Anon., USDA nutrient database for standard reference, Release 22, USDA, Dep. Agric., Agric. Res. Serv., Wash., D.C., U.S.A., 2009.
Anon., Food and nutrition information center: dietary reference intakes, FNB/FNIC, Food Nutr. Board, Wash., D.C., U.S.A., 2010.
Elleuch, M., Bedigian, D., Roiseux, O., Besbes, S., Blecker, C., Attia, H., Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review, Food Chem. 124 (2001) 411421.CrossRefGoogle Scholar
Rao, G.N., Nagender, A., Satyanarayana, A., Rao, D.G., Preparation, chemical composition and storage studies of quamachil (Pithecellobium dulce L.) aril powder, J. Food Sci. Tech. Mysore. 48 (2011) 9095.CrossRefGoogle ScholarPubMed
Everette, J.D., Bryant, Q.M., Green, A.M., Abbey, Y.A., Wangila, G.W., Walker, R.B., Thorough study of reactivity of various compound classes toward the Folin-Ciocalteu reagent, J. Agric. Food Chem. 58 (2010) 81398144.CrossRefGoogle ScholarPubMed
Nour, V., Trandafir, I., Ionica, M.E., Ascorbic acid, anthocyanins, organic acids and mineral content of some black and red currant cultivars, Fruits 66 (2011) 353362.CrossRefGoogle Scholar
Szajdek, A., Borowska, E.J., Bioactive compounds and health-promoting properties of berry fruits: a review, Plant Foods Hum. Nutr. 63 (2008) 147156.CrossRefGoogle ScholarPubMed
Cayupán, Y.S., Ochoa, M.J., Nazareno, M.A., Health-promoting substances and antioxidant properties of Opuntia sp. fruits. Changes in bioactive compound contents during ripening process, Food Chem. 126 (2011) 514519.CrossRefGoogle Scholar
Rop, O., Jurikova, T., Mlcek, J., Kramarova, D., Sengee, Z., Antioxidant activity and selected nutritional values of plums (Prunus domestica L.) typical of the White Carpathian Mountains, Sci. Hortic. 122 (2009) 545549.CrossRefGoogle Scholar
McDougall, G.J., Shipiroo, F., Dobson, O., Smith, P., Blake, A., Stewart, D., Different polyphenolic components of soft fruits inhibit a-amylase and a-glucosidase, J. Agric. Food Chem. 53 (2005) 27602766.CrossRefGoogle Scholar
Wiese, S., Gärtner, S., Rawel, H.M., Winterhalter, P., Kulling, S.E., Protein interactions with cyanidin-3-glucoside and its influence on a-amylase activity, J. Sci. Food Agric. 89 (2009) 3340.CrossRefGoogle Scholar
Delorme, S., Chiasson, J.L., Acarbose in the prevention of cardiovascular disease in subjects with impaired glucose tolerance and type 2 diabetes mellitus, Curr. Opin. Pharm. 5 (2005) 184189.CrossRefGoogle ScholarPubMed
Cariello, A., Cardiovascular effects of acute hyperglycaemia: pathophysiological underpinnings, Diab. Vasc. Dis. Res. 5 (2005) 260268.CrossRefGoogle Scholar
Raju, B.C., Tiwari, A.K., Kumar, J.A., Ali, A.Z., Agawane, S.B., Saidachary, G., Madhusadana, K., a-Glucosidase inhibitory antihyperglycemic activity of substituted chromenone derivatives, Bioorg. Med. Chem. 18 (2010) 358365.CrossRefGoogle Scholar
Wall, E.E., Wani, M.C., Hughes, T.J., Taylor, H., Plant antimutagenic agents, 1. General bioassay and isolation procedures, J. Nat. Prod. 51 (1988) 866873.CrossRefGoogle ScholarPubMed
Purohit, V., Basu, A.K., Mutagenicity of nitroaromatic compounds, Chem. Res. Toxicol. 13 (2000) 673692.CrossRefGoogle ScholarPubMed
Santos-Cervantes, M.E., Ibarra-Zazueta, M.E., Loarca-Piña, G., Paredes-López, O., Delgado-Vargas, F., Antioxidant and antimutagenic activities of Randia echinocarpa fruit, Plant Foods Hum. Nutr. 62 (2007) 7177.CrossRefGoogle ScholarPubMed
González de Mejía, E., Castaño-Tostado, E., Loarca-Piña, G., Antimutagenic effects of natural phenolic compounds in beans, Mutat. Res. 441 (1999) 19.CrossRefGoogle Scholar