Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-31T00:26:30.389Z Has data issue: false hasContentIssue false

Chromosomal control of early embryonic development in mice: II. Experiments on embryos with structural aberrations of autosomes 7, 9, 14 and 17

Published online by Cambridge University Press:  14 April 2009

V. S. Baranov
Affiliation:
Institute for Experimental Medicine, Academy of Medical Sciences of the USSR, Leningrad, U.S.S.R.

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Perculiarities of preimplantation and early postimplantation development were studied in embryos with partial deletions and duplications of chromosomes 7, 9, 14 and 17, in the progeny of mice heterozygous for the unequal reciprocal translocations T(7; 14)2Iem, T(16; 17)43H and T(9; 17)138Ca. Deficiencies for any part of autosomes 9 or 14 combined with duplications of the corresponding segments of autosomes 7 or 17 do not affect preimplantation development, though they are lethal soon after implantation. Deficiency for the distal part of chromosome 7 (Df7F4) induces embryonic death by the early blastocyst stage. Deficiencies for the distal part of chromosome 17 (Df17El–E5), as well as for its proximal region (Df17AB) carrying all genes of the T-t complex, have no detrimental effects on cleavage, blastulation and implantation, but are lethal after implantation, mostly during early neurulation. Deficiency for the middle part of chromosome 17 (Df17CD) is expressed just after a few cleavage divisions, and these embryos all die by the morula stage. It is suggested that the genes of the CD region of chromosome 17 and of the F4 region of chromosome 7 are of major significance for genetic control of early development in the laboratory mouse.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

References

REFERENCES

Baranov, V. S. (1979). New marker reciprocal translocationsT(7.14)2Iem and T(7.14.15)3Iem in laboratory mice. Genetika 15, 16511660. (Russian with English summary.)Google Scholar
Baranov, V. S. (1980). Mice with Robertsonian translocations in experimental biology and medicine. Genelica 52/53, 2332.Google Scholar
Baranov, V. S. (1981). Rb(2.6)4Iem – a new marker Robertsonian translocation in laboratory mouse Mus musculus. Tsitologiya 23, 13621367. (Russian with English summary.)Google Scholar
Baranov, V. S. (1982). Chromosomal control of early embryonic development in mice. I. Experiments on embryos with autosomal monsomy. Genelica, The Netherlands. (In the Press).Google Scholar
Baranov, V. S. & Dyban, A. P. (1968). Analysis of spermatogenesis and embryogenesis in mice, heterozygous for T6Ca translocation. Genetika 4, 7083. (Russian with English summary.)Google Scholar
Baranov, V. S. & Dyban, A. P. (1970). Chromosomal non-disjunction and peculiarities of embryonic development in progeny of mice, heterozygous for T6Ca translocation. Ontogenez 1, 248261. (Russian with English summary.)Google Scholar
Baranov, V. S. & Dyban, A. P. (1971). Embryogenesis and peculiarities of karyotype in mouse embryos with centric fusion of chromosomes (Robertsonian translocation T1Iem). Ontogenez 2, 164176. (Russian with English summary.)Google Scholar
Baranov, V. S., Dyban, A. P. & Chebotar, N. A. (1980). Peculiarities of preimplantation development in mice with monosomy for autosome 17. Ontogenez 11, 148149. (Russian with English summary.)Google Scholar
Baranov, V. S., Gregorova, S. & Forejt, J. (1981). Fertility and cytogenetic analysis of early embryogenesis in mice with chromosomal translocation T(16.17)43H. Genetika 17, 14541459. (Russian with English summary.)Google Scholar
Baranov, V. S. & Udalova, L. D. (1975). Autosomal trisomy in mice, heterozygous for Robertsonian translocations. Archives of Anatomie, Histologie & Embryologie 119, 6374. (Russian with English summary.)Google Scholar
Bennett, D. (1975). The T-locus of the mouse. Cell 6, 441454.Google Scholar
Bennett, D. (1981). T/t locus, its role in embryogenesis and its relation to classical histocom-patability systems. Progress in Allergy 29, 3553.Google Scholar
Boer, P. De & Groen, A. (1974). Fertility and meiotic behaviour of male T70H tertiary trisomes of the mouse. A case of preferential telomeric meiotic pairing in a mammal. Cytogenetics and Cell Genetics 13, 485510.Google Scholar
Brinster, R. L. (1973). Paternal glucose phosphate isomerase activity in three-day mouse embryos. Biochemical Genetics 9, 187191.Google Scholar
Committee On Standardized Genetic Nomenclature For Mice (1972). Standard karyotype of the mouse Mus musculus. Journal of Heredity 63, 6972.Google Scholar
Dyban, A. P. (1974). About new approaches and perspectives in experimental cytogenetic of embryonic development in mammals. Ontogenez 5, 568581. (Russian with English summary.)Google Scholar
Dyban, A. P. & Baranov, V. S. (1978). Cytogenetics on Mammalian Development, Moscow: ‘Nauka’. Russ. 216 pp.Google Scholar
Eicher, E. M. & Washburn, L. L. (1978). Assignment of genes to regions in mouse chromosomes. Proceedings of the National Academy of Sciences of the U.S.A. 75, 946950.CrossRefGoogle ScholarPubMed
Epstein, Ch. J. (1981). The effects of chromosomal aneuploidy on early developments experimental approaches. In Fertilization and Embryonic Development in vitro (ed. Mastroianni, L. Jr. and Biggers, J. D.), pp. 274284. New York, London: Plenum Press.Google Scholar
Ford, C. E. & Clegg, H. M. (1969). Reciprocal translocations. British Medical Bulletin 25, 110114.CrossRefGoogle ScholarPubMed
Forejt, J., Čapkova, J. & Gregorova, S. (1980). T/18, 17/43H translocation as a tool in analysis of the proximal part of chromosome 17 (including T-t gene complex) of the mouse. Genetical Research 35, 165177.Google Scholar
Gluecksohn-Waelsch, S. (1979). Genetic control of morphogenetic and biochemical differentiation: lethal albino deletions in the mouse. Cell 16, 225237.Google Scholar
Goldbard, S. B., Verbanac, K. M. & Warner, C. M. (1982 a). Genetic analysis of H-2 linked gene(s) affecting early mouse embryo development. Journal of Immunogenetics 9, 7782.CrossRefGoogle ScholarPubMed
Goldbard, S. B., Verbanac, K. M. & Warner, C. M. (1982 b). Role of the H-2 complex in preimplantation mouse embryo development. Biology of Reproduction 26, 591596.CrossRefGoogle ScholarPubMed
Gregorova, S., Baranov, V. S. & Forejt, J. (1981). Partial trisomy (including T-t gene complex) of chromosome 17 of the mouse. The effect on male fertility and the transmission to progeny. Folia Biologica (Prague) 27, 171177.Google ScholarPubMed
Gropp, A. (1975). Chromosomal animal model of human disease. Fetal trisomy and developmental failure. In Teratology (ed. Berry, Ch. and Posvillo, D. E.), pp. 1731. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Gropp, A. (1981 a) Chromosomenaberrationen, Geschwülste und Entwicklungsstorüngen. Klinische Wochenscrift 59, 965975.Google Scholar
Gropp, A. (1981 b). Clinical and experimental pathology of fetal wastage. In Human Reproduction (ed. Semm, K. and Mettler, L.), 208216. Amsterdam: Excerpta Medica. ICS no. 551.Google Scholar
Gropp, A., Putz, B. & Zimmermann, U. (1976). Autosomal monosomy and trisomy, causing developmental failure. In Current Topics in Pathology (ed. Grundman, K. and Kirsten, W. H.), pp. 177192. Berlin, Heidelberg: Springer-Verlag.Google Scholar
Gropp, A., Tettenborn, U. & Lehmann, E. Von (1970). Chromosomenvariation vom robert-sonischen Typus bei der Tabakamaus, M. poschiavinus und ihren Hybriden mit der Labora-toriumsmaus. Cytogenetic 9, 923.Google Scholar
Johnson, D. R. (1974). Hairpin-tail: A case of postreductional gene action in the mouse egg? Genetics 76, 795805.Google Scholar
Johnson, D. R. (1975). Further observations on the hairpin-tail (Tthp) mutation in the mouse. Genetical Research 24, 207213.Google Scholar
Lyon, M. F., Evans, E. P., Jarvis, S. E. & Sayer, I. (1979). t-Haplotypes of the mouse may involve a change in intercalary DNA. Nature 279, 3842.CrossRefGoogle ScholarPubMed
Lyon, M. & Glenister, P. H. (1977). Factors, affecting the observed number of young, resulting from adjacent-2 disjunction in mice, carrying a translocation. Genetical Research 29, 8392.Google Scholar
Lyon, M. & Meredith, R. (1966). Autosomal translocations, causing male sterility and viable aneuploidy in the mouse. Cytogenetica 5, 335354.Google Scholar
Magnusson, T. & Epstein, Ch. J. (1981). Genetic control of very early mammalian development. Biological Reviews 56, 369408.Google Scholar
McLaren, A. (1976). Genetics of the early mouse embryo. Annual Review of Genetics 10, 361388.CrossRefGoogle ScholarPubMed
Miller, D. A., Dev, V. G., Tantravahi, R., Miller, O. J., Schiffman, M. B., Yates, R. A. & Gluecksohn-Waelsch, S. (1974). Cytological detection of the c25H deletion involving the albino (c) locus on chromosome 7 in the mouse. Genetics 78, 905910.Google Scholar
Miller, O. J. & Miller, D. A. (1975). Cytogenetics of the mouse. Annual Review of Genetics 9, 285303.CrossRefGoogle ScholarPubMed
Oshimura, M. & Takagi, N. (1975). Meiotic disjunction in T(14, 15)6Ca heterozygotes and fate of chromosomally unbalanced gametes in embryonic development. Cytogenetics and Cell Genetics 15, 116.Google Scholar
Sawicki, J. A., Magnusson, T. & Epstein, Ch. J. (1981). Evidence for expression of the paternal genome in the two-cell mouse embryo. Nature 294, 450451.CrossRefGoogle ScholarPubMed
Searle, A. G., Beechy, C. V. & Evans, E. P. (1978). Meiotic effects in chromosomally derived sterility of mice. Annales de Biologie Animale Biochemie et Biophysigue 18 (2B), 391398.CrossRefGoogle Scholar
Searle, R. F., Sellens, M. H., Elson, J., Jenkinson, E. J. & Billington, W. D. (1976). Detection of alloantigens during preimplantation development and early trophoblast differentiation. Journal of Experimental Medicine 143, 348359.Google Scholar
Sherman, M. I. & Wudl, L. R. (1977). The mouse T/t complex. In Concepts in Mammalian Embryogenesis (ed. Sherman, M. I.), pp. 136234. Cambridge, Mass.: M.I.T. Press.Google Scholar
Snell, G. D. (1941). Linkage studies with induced translocations in mice. Genetics 26, 169.Google Scholar
Snell, G. D. (1946). An.analysis of translocation in the mouse. Genetics 31, 157180.CrossRefGoogle ScholarPubMed
Snell, G. D., Bodeman, E. & Hollander, W. (1934). A translocation in the house mouse and its effect of development. Journal of Experimental Zoology 67, 93104.CrossRefGoogle Scholar
White, B. J., Tjio, J.-H., Van De Water, L. C. & Crandall, C. (1972). Studies of mice with a balanced complement of 36 chromosomes derived from F1 hybrids of T1Wh and T1Ald translocation homozygotes. Proceedings of the National Academy of Sciences of the U.S.A. 69, 27572761.CrossRefGoogle ScholarPubMed
Womack, J. E. (1978). Biochemical loci: mouse. In Inbred and Genetically Defined Strains of Laboratory Animals. Part 1. Mouse and Rat (ed. Altman, Ph. and Katz, D. D.), pp. 96100. Federation of Animal Society for Experiment Biology, Bethesda, Maryland.Google Scholar
Wurster, D. H. (1972). Mouse chromosomes identified by trypsin–Giemsa (T—G) banding. Cytogenetics 11, 379387.CrossRefGoogle ScholarPubMed