Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-25T07:21:56.409Z Has data issue: false hasContentIssue false

Clonal analysis of the lac operons from Klebsiella M5a1 and the Lac plasmid (pRE2) from Klebsiella V9A

Published online by Cambridge University Press:  14 April 2009

F. E. Hitchin
Affiliation:
Institute of Animal Genetics, University of Edinburgh, West Mains Road, Edinburgh EH9 3JN, UK
E. C. R. Reeve*
Affiliation:
Institute of Animal Genetics, University of Edinburgh, West Mains Road, Edinburgh EH9 3JN, UK
*
Corresponding author.

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The chromosomal lac region of the coliform bacterium Klebsiella M5al was cloned into the multicopy plasmid pBR322 to give pHE7 and pHE8. pHE8 contains 12·6 kb of M5al DNA, including its complete lac operon, and pHE7 contains 2·5 kb of M5al DNA and includes the complete lac Y gene and a small segment of lacZ. The M5al operon has the same gene order as the Escherichia coli lac operon. The lac genes of the Lac plasmid of Klebsiella V9A were cloned into pBR322 to give pHE1 and pHE2, of approximately 39 and 43 kb. Both plasmids were unstable in an E. coli RecA- strain, in contrast to the stability of pHE8. Polyacrylamide gel electrophoresis tests suggested that the M5a1 β-galactosidase monomer is about 5% longer, i.e. has about 50 more amino acids, than that of the E. coli Z gene. Tests made on the enzymes coded by the lac operons of M5a1, another Klebsiella strain (V9A) and its resident Lac plasmid, and several Lac+ Enterobacteria, led to the conclusion that only Escherichia coli among the Enterobacteria contains an active lacA gene.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

References

Alpers, D. H., Appel, S. H. & Tomkins, G. M. (1965). A spectrophotometric assay for thiogalactoside trans-acetylase. Journal of Biological Chemistry 240, 1013.CrossRefGoogle Scholar
Altenbrucher, J., Schmid, K. & Schmitt, R. (1983). Tn1721-encoded tetracycline resistance: mapping of structural and regulatory genes mediating resistance. Journal of Bacteriology 153, 116123.CrossRefGoogle Scholar
Berg, D. (1977). Insertion and excision of the transposable kanamycin resistance determinant Tn5. In DNA Insertion Elements, Plasmids and Episomes (ed. Bukhari, A. I., Shapiro, J. A. and Adhya, S. L.), pp 205212. New York: Cold Spring Harbor Laboratory.Google Scholar
Berg, D. E., Weiss, A. & Crossland, L. (1980). Polarity of Tn5 insertion mutations in E. coli. Journal of Bacteriology 142, 439446.CrossRefGoogle Scholar
Bolivar, F., Rodriguez, R. L., Betlach, M. C. & Boyer, H. W. (1977 a). Construction and characterization of new cloning vehicles. I. Ampicillin-resistant derivatives of the plasmid pMB9. Gene 2, 7593.CrossRefGoogle ScholarPubMed
Bolivar, F., Rodriguez, R. L., Greene, P. J., Betlach, M. V., Heynecker, H. L., Boyer, H. W., Crosa, J. H. & Falkow, S. (1977 b). Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2, 95113.CrossRefGoogle Scholar
Buvinger, W. E., & Riley, M. (1985 a) Nucleotide sequence of Klebsiella pneumoniae lac genes. Journal of Bacteriology 163, 850857.CrossRefGoogle ScholarPubMed
Buvinger, W. E. & Riley, M. (1985 b). Regulatory region of the divergent Klebsiella pneumoniae lac operon. Journal of Bacteriology 163, 858862.CrossRefGoogle ScholarPubMed
Cornelis, G. (1981). Sequence relationships between plasmids carrying genes for lactose utilisation. Journal of General Microbiology 124, 9197.Google Scholar
Davis, R. W., Botstein, D. & Roth, J. R. (1980). A Manual for Genetic Engineering: Advanced Bacterial Genetics. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory.Google Scholar
Guiso, N. & Ullmann, A. (1976). Expression and regulation of lactose genes carried by plasmids. Journal of Bacteriology 127, 691697.CrossRefGoogle ScholarPubMed
Laemmli, K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680685.CrossRefGoogle ScholarPubMed
Macdonald, C. & Riley, M. (1983). Cloning chromosomal lac genes of Klebsiella pneumoniae. Gene 24, 341345.CrossRefGoogle ScholarPubMed
McMorrow, I., Chin, D. T., Fiebig, K., Pierce, J. L., Wilson, D. M., Reeve, E. C. R. & Wilson, T. H. (1989). The lactose carrier of Klebsiella pneumoniae M5a1: the physiology of transport and the nucleotide sequence of the lac Y gene. Biochimica et Biophysica Acta 945, 315323.CrossRefGoogle Scholar
Miller, J. H., (1972). Experiments in Molecular Genetics. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory.Google Scholar
Miller, J. H., Calos, M. P., Galas, D., Hofer, M., Buchel, D. E., & Muller-Hill, B. (1980). Genetic analysis of tranposition in the lac region of Escherichia coli. Journal of Molecular Biology 144, 118.CrossRefGoogle Scholar
Reeve, E. C. R. (1973). The lactose system in Klebsiella aerogenes V9A. 3. Specific repression of the lac operon by melibiose and raffinose. Genetical Research 22, 217221.CrossRefGoogle ScholarPubMed
Reeve, E. C. R. (1976). The lactose system in Klebsiella aerogenes V9A. 5. Lac-permease defective mutants of two Klebsiella Lac plasmids and their apparent reversion to wild-type. Genetical Research 28, 6174.CrossRefGoogle ScholarPubMed
Reeve, E. C. R. & Braithwaite, J. A. (1970). FK-lac, an episome with unusual properties found in a wild strain of a Klebsiella species. Nature 228, 162164.CrossRefGoogle Scholar
Reeve, E. C. R. & Braithwaite, J. A. (1972). The lactose system in Klebsiella aerogenes V9A. 1. Characteristics of two Lac mutant phenotypes which revert to wild-type. Genetical Research 20, 175191.CrossRefGoogle ScholarPubMed
Reeve, E. C. R. & Braithwaite, J. A. (1974). The lactose system of Klebsiella aerogenes V9A. A comparison of the lac operons of Klebsiella and Escherichia coli. Genetical Research 24, 323331.CrossRefGoogle ScholarPubMed
Robertson, J. M. & Reeve, E. C. R. (1972). Analysis of the resistance mediated by several R-factors to tetracycline and minocycline. Genetical Research 20, 239252.CrossRefGoogle ScholarPubMed
Smith, T. F. & Sadler, J. R. (1971). The nature of lactose operator mutations. Journal of Molecular Biology 59, 273305.CrossRefGoogle Scholar
Sutcliffe, J. G. (1978). pBR322 restriction map derived from the DNA sequence: accurate DNA size markers up to, 4361 nucleotide pairs long. Nucleic Acid Research 5, 27212728.CrossRefGoogle ScholarPubMed
Wilson, D. M., Wilson, T. H. & Reeve, E. C. R. (1979). The lactose system in Klebsiella aerogenes V9A. 6. Lactose transport. Genetical Research 33, 93108.CrossRefGoogle ScholarPubMed
Yang, R. C.-A., Lis, J. & Wu, R. (1979). Elution of DNA from agarose gels after electrophoresis. Methods of Enzymology 68, 176182.CrossRefGoogle ScholarPubMed