Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-13T16:09:21.187Z Has data issue: false hasContentIssue false

Complementation in balanced heterokaryons and heterozygous diploids of Aspergillus nidulans

Published online by Cambridge University Press:  14 April 2009

C. F. Roberts
Affiliation:
Microbiology Unit, Department of Biochemistry, University of Oxford

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Two total and five leaky sorbitol mutants isolated in Aspergillus nidulans by defective growth on the sugar are all recessive. The mutants are closely linked, they appear to represent three linked genes spanned by a deletion.

2. Mutants which complement in heterozygous diploids do not complement in balanced heterokaryons. Failure to complement is a property of the mutants and not the result of a nutritional interaction or an unfavourable nuclear ratio in the heterokaryons.

3. Sorbitol is oxidized by an inducible enzyme system in the wild-type. There are at least two enzymes concerned in the oxidative assimilation of sorbitol, an initial oxidative enzyme, which is defective in the leaky mutants, and a later enzyme defective in the total mutants. There may also be a second non-oxidative pathway for sorbitol metabolism.

4. In diploids complementary pairs of mutants oxidized sorbitol at 75% the rate of the wild-type but non-complementary mutants did not oxidize the sugar. In balanced heterokaryons none of the pairs of mutants oxidized the substrate. It is concluded that failure of inter-genic complementation in the heterokaryons is the result of a failure of either enzyme formation or enzyme function. Models to account for differences in enzyme formation in heterokaryons and diploids are suggested.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1964

References

REFERENCES

Case, M. E. & Giles, N. H. (1960). Comparative complementation and genetic maps of the pan 2 locus in Neurospora crassa. Proc. nat. Acad. Sci., Wash., 46, 659.CrossRefGoogle ScholarPubMed
Catcheside, D. G. (1960). Complementation among histidine mutants of Neurospora crassa. Proc. roy. Soc. B, 153, 179.Google ScholarPubMed
Cove, D. J. & Pateman, J. A. (1963). Independently segregating genetic loci concerned with nitrate reductase in Aspergillus nidulans. Nature, Lond., 197, 262.CrossRefGoogle Scholar
Dorn, G. L. & Burdick, A. B. (1962). On the recombinational structure and complementation relationships in the m-dy complex of Drosophila melanogaster. Genetics, 47, 503.CrossRefGoogle ScholarPubMed
Fincham, J. R. S. (1962). Genetically determined multiple forms of glutamic dehydrogenase in Neurospora crassa. J. mol. Biol. 4, 257.CrossRefGoogle ScholarPubMed
Fincham, J. R. S. & Coddington, A. (1963). Complementation at the am locus of Neurospora crassa: a reaction between different mutant forms of glutamate dehydrogenase. J. mol. Biol. 6, 361.CrossRefGoogle Scholar
Forbes, E. (1959). Use of mitotic segregation for assigning genes to linkage groups in Aspergillus nidulans. Heredity, 13, 67.CrossRefGoogle Scholar
Garen, A. & Echols, H. A. (1962). Genetic control of induction of alkaline phosphatase synthesis in Escherichia coli. Proc. nat. Acad. Sci., Wash., 47, 1398.CrossRefGoogle Scholar
Grindle, M. (1963). Heterokaryon compatability of unrelated strains in the Aspergillus nidulans group. Heredity, 18, 191.CrossRefGoogle ScholarPubMed
Hughes, D. E. (1951). A press for disrupting bacteria and other micro-organisms. Brit. J. exp. Path. 32, 97.Google ScholarPubMed
Jacob, F. & Monod, J. (1961). Genetic regulatory mechanisms in the synthesis of proteins. J. mol. Biol. 3, 318.CrossRefGoogle ScholarPubMed
Käfer, E. (1960). High frequency of spontaneous and induced somatic segregation in nidulans. Nature, Lond., 186, 619.CrossRefGoogle Scholar
Käfer, E. (1963). Origin and pedigree of a VI-VII translocation in Aspergillus nidulans. Microbiol. Genet. Bull. 19, 12.Google Scholar
Kornberg, A. & Pricer, W. E. (1951). Enzymatic phosphorylation of adenosine and 2,6-diaminopurine riboside. J. biol. Chem. 193, 481.CrossRefGoogle ScholarPubMed
Lewis, D. (1961). Genetical analysis of methionine suppressors in Coprinus. Genet. Res. 2, 141.CrossRefGoogle Scholar
Loper, J. C. (1961). Enzyme complementation in mixed extracts of mutants from the Salmonella histidine B locus. Proc. nat. Acad. Sci., Wash. 47, 1440.CrossRefGoogle ScholarPubMed
Morgan, D. H. (1961). Recombination and complementation between suppressor genes in Coprinus lagopus. Heredity, 16, 239.Google Scholar
Partridge, C. W. H. (1960). Altered properties of the enzyme, adenylosuccinase, produced by interallelic complementation at the ad4 locus in Neurospora crassa. Biochem. Biophys. Res. Commun. 3, 613.CrossRefGoogle ScholarPubMed
Pontecorvo, G. (1952). Genetical analysis of cell organisation. Symp. Soc. exp. Biol. 6, 218.Google Scholar
Pontecorvo, G. (1963). Microbial genetics: retrospect and prospect. Proc. roy. Soc. B, 158, 1.Google Scholar
Pontecorvo, G., Roper, J. A., Hemmons, L. M., MacDonald, K. D. & Bufton, A. W. J. (1953). The genetics of Aspergillus nidulans. Advanc. Genet. 5, 141.CrossRefGoogle ScholarPubMed
Pontecorvo, G., Tare Gloor, E. & Forbes, E. (1954). Analysis of mitotic recombination in Aspergillus nidulans J. Genet. 52, 226.CrossRefGoogle Scholar
Pritchard, R. H. & Pontecorvo, G. (1953). The formation of ascospores with diploid nuclei in Aspergillus nidulans. Microbiol. Genet. Bull. 7, 18.Google Scholar
Roberts, C. F. (1963 a). The genetic analysis of carbohydrate utilization in Aspergillus nidulans. J. gen. Microbiol. 31, 45.CrossRefGoogle ScholarPubMed
Roberts, C. F. (1963 b). The adaptive metabolism of D-galactose in Aspergillus nidulans. J. gen. Microbiol. 31, 285.CrossRefGoogle ScholarPubMed
Roper, J. A. (1952). Production of heterozygous diploids in filamentous fungi. Experimentia, 8, 14.CrossRefGoogle ScholarPubMed
Roper, J. A. (1958). Nucleo-cytoplasmic interactions in Aspergillus nidulans. Cold. Spr. Harb. Symp. quant. Biol. 23, 141.CrossRefGoogle ScholarPubMed
Shaw, C. R. & Barto, E. (1963). Genetic evidence for the subunit structure of lactate de-hydrogenase isozymes. Proc. not. Acad. Sci., Wash., 50, 211.CrossRefGoogle Scholar
Shepherd, C. J. (1956). Pathways of cysteine synthesis in Aspergillus nidulans. J. gen. Microbiol. 15, 29.CrossRefGoogle ScholarPubMed
Umbreit, W. W., Burris, R. M. & Stauffer, J. F. (1949). Manometric Techniques; revised edn. Minneapolis: Burgess Publishing Co.Google Scholar
Wolff, J.B. & Kaplan, N. O. (1956). D-Mannitol-1 -phosphate dehydrogenase from Escherichia coli. J. biol. Chem. 218, 849.CrossRefGoogle ScholarPubMed
Yanofsky, C. (1960). The tryptophane synthetase system. Bact. Rev. 24, 221.CrossRefGoogle ScholarPubMed