Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-07-25T06:31:21.030Z Has data issue: false hasContentIssue false

Effects of gene dosage and hormones on the expression of Dr in the platyfish, Xiphophorus maculatus (Poeciliidae)*

Published online by Cambridge University Press:  14 April 2009

Robert J. Valenti
Affiliation:
Osborn Laboratories of Marine Sciences, New York Aquarium, New York Zoological Society, Brooklyn, N.Y. 11224, U.S.A.
Klaus D. Kallman
Affiliation:
Osborn Laboratories of Marine Sciences, New York Aquarium, New York Zoological Society, Brooklyn, N.Y. 11224, U.S.A.

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Platyfish, Xiphophorus maculatus, are polymorphic for the patterns red-dorsal (Dr) and spotted-dorsal (Sd) fins, both controlled by closely linked loci on the X chromosome of Jamapa strain, Jp 163A. The intensity of red pigment looks the same in males and females, but spectrophotometric analysis of dorsal fin extracts showed that heterozygous intact males have significantly more red pigment (drosopterin) than homozygous or heterozygous females or castrated males. The mechanism of Dr expression in Jamapa is, thus, similar to the one present in the Belize stock, where a sex difference is readily apparent that is known to be under androgenic control. The Sd phenotype is identical in both sexes. Sd and Dr are not restricted to the X chromosome, and no evidence for gene dosage compensation has been obtained. Within the Jamapa stock the expression of Sd and Dr are best described in terms of dominance and recessiveness. Dr is strongly augmented by a testicular hormone. Dr and Sd have been separated by crossing-over. In natural populations both genes can occur by themselves, linked to each other or to other pigment genes. The development of the Sd macromelanophores is not contingent upon the presence of pterinophores (Dr) in the dorsal fin or elsewhere in the body.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1973

References

REFERENCES

Anders, F. (1967 a). Tumour formation in platyfish–swordtail hybrids as a problem of gene regulation. Experientia 23, 110.Google Scholar
Anders, F. (1967 b). Über genetische Mechanismen der Regulation niederer und höherer Systeme. Zoologischer Anzeiger 179, 179.Google Scholar
Anders, F., Anders, A. & Klinke, K. (1963). Genetische und modifikatorische Beeinflussung der Spiegelhöhe des Aminosöurenpools und einiger quantitativer morphologischer Phäne unter besonderer Berücksichtigung der Tumorbildung. Untersuchungen an Zahnkarpfen und Drosophila. Zoologischer Anzeiger (26. Suppl.), 97118.Google Scholar
Anders, F. & Klinke, K. (1967). Über Gen-Dosiseffekt und Gen-Dosiskompensation. Zoologischer Anzeiger (30. Suppl.), 391401.Google Scholar
Atz, J. W. (1962). Effects of hybridization on pigmentation in fishes of the genus Xiphophorus. Zoologica (New York) 47, 153181.Google Scholar
Baird, R. C. (1968). Aggressive behaviour and social organization in Mollienesia latipinna Le Sueur. The Texas Journal of Science 20, 157176.Google Scholar
Cock, A. G. (1964). Dosage compensation and sex-chromatin in non-mammals. Genetical Research 5, 354365.CrossRefGoogle Scholar
Fraser, A. C. & Gordon, M. (1929). The genetics of Platypoecilus. II. The linkage of two sex-linked characters. Genetics 14, 160179.CrossRefGoogle ScholarPubMed
Goodrich, H. B., Hill, G. A. & Arrick, M. S. (1941). The chemical identification of gene-controlled pigments in Platypoecilus and Xiphophorus and comparisons with other tropical fish. Genetics 26, 573586.Google Scholar
Gordon, M. (1937). Genetics of Platypoecilus maculatus. III. Inheritance of sex and crossing over of the sex chromosomes in the platyfish. Genetics 22, 376392.CrossRefGoogle Scholar
Gordon, M. (1947). Genetics of Platypoecilus maculatus. IV. The sex determining mechanism in two wild populations of the Mexican platyfish. Genetics 32, 817.CrossRefGoogle ScholarPubMed
Gordon, M. (1948). Effects of five primary genes on the site of melanomas in fishes and the influence of two color genes on their pigmentation. In The Biology of Melanomas. Special Publication of the New York Academy of Science 4, 216268.Google Scholar
Gordon, M. (1950). Fishes as laboratory animals. pp. 345449 of The Care and Breeding of Laboratory Animals, ed. Farris, E. J.. New York: Wiley.Google Scholar
Grobstein, C. (1947). The role of androgen in declining regenerative capacity during morphogenesis of the Platypoecilus maculatus gonopodium. Journal of Experimental Zoology 106, 313314.CrossRefGoogle ScholarPubMed
Haskins, C. P., Haskins, B. F., McLaughlin, J. J. A. & Hewitt, R. E. (1961). Polymorphism and population structure in Lebistes reticulatus, an ecological study. In Vertebrate Speciation (ed. Blair, W. Frank), pp. 320395.Google Scholar
Haskins, C. P., Young, P., Hewitt, R. E. & Haskins, E. F. (1970). Stabilized heterozygosis of supergenes mediating certain Y-linked colour patterns in populations of Lebistes reticulatus. Heredity 25, 575589.CrossRefGoogle Scholar
Kallman, K. D. (1965). Genetics and geography of sex determination in the poeciliid fish, Xiphophorus maculatus. Zoologica (New York) 50, 151190.Google Scholar
Kallman, K. D. (1970 a). Sex determination and the restriction of sex-linked pigment patterns to the X and Y chromosomes in populations of a poeciliid fish, Xiphophorus maculatus, from the Belize and Sibun Rivers of British Honduras. Zoologica (New York) 55, 116.Google Scholar
Kallman, K. D. (1970 b). Different genetic basis of identical pigment patterns in two populations of platyfish, Xiphophorus maculatus. Copeia, pp. 472487.Google Scholar
Kallman, K. D. & Schreibman, M. P. (1971). The origin and possible genetic control of new, stable pigment patterns in the poeciliid fish Xiphophorus maculatus. Journal of Experimental Zoology 176, 147168.Google Scholar
Kosswig, C. (1929). Über die veränderte Wirkung von Farbgenen des Platypoecilus in der Gattungskreuzung mit Xiphophorus. Zeitschrift für induktive Abstammungs- u. Vererbungslehre 50, 6373.Google Scholar
Matsumoto, J. (1965). Studies on fine structure and cytochemical properties of erythrophores in swordtails, Xiphophorus helleri, with special reference to their pigment granules (pterinosomes). Journal of Cell Biology 27, 493504.CrossRefGoogle ScholarPubMed
McAllister, W. H. (1958). The correlation of coloration with social rank in Gambusia hurtadoi. Ecology 39, 477482.CrossRefGoogle Scholar
Öktay, M. (1964). Über genbedingterote Farbmuster bei Xiphophorus maculatus. Mitteilungen-Hamburgischen Zoologischen Museum und Institut. (Ergänzungsband zu Band 61, Kosswig-Festschrift), 133157.Google Scholar
Steel, R. G. D. & Torrie, J. H. (1960). Principles and Procedures of Statistics, p. 481. New York: McGraw-Hill.Google Scholar
Winge, O. (1922). One-sided masculine and sex-linked inheritance in Lebistes reticulatus. Journal of Genetics 12, 145162.Google Scholar
Winge, O. (1927). The location of eighteen genes in Lebistes reticulatus. Journal of Genetics 18, 143.Google Scholar
Zander, C. D. (1969). Über die Entstehung und Veränderung von Farbmustern in der Gattung Xiphophorus (Pisces). Mitteilungen-Hamburgischen Zoologischen Museum und Institut. 66, 241271.Google Scholar