Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-15T16:18:23.515Z Has data issue: false hasContentIssue false

The functional units of macronuclear assortment in Tetrahymena thermophila

Published online by Cambridge University Press:  14 April 2009

J. Wynne McCoy
Affiliation:
Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, U.S.A.

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Macronuclei assorting simultaneously for H, Chx, Mpr, and co, and containing only one or two copies of the HD allele produced several combinations of phenotypes at the other loci, instead of only one or two such combinations. It follows that macronuclear subnuclei, if they exist at all, must frequently exchange parts. Models involving somatic recombination, transient subnuclei, or progressive chromosome fragmentation are discussed as possible explanations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1979

References

REFERENCES

Allen, S. L. & Gibson, I. (1975). Genetics of Tetrahymena. In: The Biology of Tetrahymena (ed. Elliott, A. M.), pp. 307373. Stroudsberg, Pennsylvania: Dowden, Hutchison, and Ross.Google Scholar
Bleyman, L. K. (1971). Temporal patterns in ciliated protozoa. In Developmental Aspects of the Cell Cycle (ed. Cameron, I. L., Padilla, G. M., and Zimmerman, A.), pp 6791. New York: Academic Press.CrossRefGoogle Scholar
Bleyman, L. K., Simon, E. M. & Brosi, R. (1966). Sequential nuclear differentiation in Tetrahymena. Genetics 54, 277291.CrossRefGoogle ScholarPubMed
Bruns, P. J. (1971). Immobilization antigens of Tetrahymena pyriformis. I. Assay and extraction. Experimental Cell Research 65, 445453.CrossRefGoogle ScholarPubMed
Corliss, J. O. (1953). Comparative studies on holotrichous ciliates in the Colpidium–Glaucoma–Leucophrys–Tetrahymena group. II. Morphology, life cycles and systematic status of strains in pure culture. Parasitology 43, 4987.CrossRefGoogle ScholarPubMed
Doerder, F. P. (1973). Regulatory serotype mutations in Tetrahymena pyriformis, syngen 1. Genetics 74, 81106.CrossRefGoogle ScholarPubMed
Doerder, F. P., and DeBault, L. E. (1975). Cytoflourometric analysis of nuclear DNA during meiosis, fertilization and macronuclear development in the ciliate Tetrahymena pyriformis, syngen 1. Journal of Cell Science 17, 471493.CrossRefGoogle Scholar
Doerder, F. P., Frankel, J., Jenkins, L. M., and DeBault, L. E. (1975). Form and pattern in ciliated protozoa: Analysis of a genie mutant with altered cell shape in Tetrahymena pyriformis, syngen 1. Journal of Experimental Zoology 80, 237258.CrossRefGoogle Scholar
Doerder, F. P., Lief, J. H. & DeBault, L. E. (1977). Macronuclear subunits of Tetrahymena thermophila are functionally haploid. Science 198, 946948.CrossRefGoogle ScholarPubMed
Doerder, F. P., Lief, J. H. & Doerder, L. E. (1975). A corrected table for macronuclear assortment in Tetrahymena pyriformis, syngen 1. Genetics 80, 263265.CrossRefGoogle ScholarPubMed
McCoy, J. W. (1977). Linkage and genetic map length in Tetrahymena thermophila. Genetics 87, 421439.CrossRefGoogle ScholarPubMed
McCoy, J. W. (1978). New approaches to the problem of macronuclear assortment. Journal of Theoretical Biology 74, 475489.CrossRefGoogle Scholar
McCoy, J. W. (1979). Variability in the timing and outcome of macronuclear assortment in Tetrahymena thermophila. Genetical Research 34, 5767.CrossRefGoogle ScholarPubMed
Nanney, D. L. (1959). Inbreeding degeneration in Tetrahymena. Genetics 42, 137146.CrossRefGoogle Scholar
Nanney, D. L. (1964). Macronuclear differentiation and subnuclear assortment in ciliates. In The Role of Chromosomes in Development (ed. Locke, M.), pp. 253273. New York: Academic Press.CrossRefGoogle Scholar
Nanney, D. L. (1968). Ciliate genetics: Patterns and programs of gene action. Annual Reviews of Genetics 2, 121140.CrossRefGoogle Scholar
Nanney, D. L. & Dubert, J. M. (1960). The genetics of the H serotype system in variety 1 of Tetrahymena pyriformis. Genetics 45, 13351349.CrossRefGoogle Scholar
Nelsen, E. M. & DeBault, L. E. (1978). Transformation in Tetrahymena pyriformis: Description of an inducible phenotype. Journal of Protozoology 25, 113119.CrossRefGoogle ScholarPubMed
Nilsson, J. R. (1970). Suggestive structural evidence of macronuclear ‘subnuclei’ in Tetrahymena pyriformis GL. Journal of Protozoology 17, 539548.CrossRefGoogle ScholarPubMed
Preer, J. R. (1976). Quantitative predictions of random segregation models of the ciliate macronucleus. Genetical Research 27, 227238.CrossRefGoogle ScholarPubMed
Raikov, I. B. (1976). Evolution of macronuclear organization. Annual Reviews of Genetics 10, 413440.CrossRefGoogle ScholarPubMed
Schensted, I. V. (1958). Model of subnuclear segregation in the macronucleus of ciliates. American Naturalist 92, 161170.CrossRefGoogle Scholar
Snedecor, G. W. (1967). Statistical Methods. Ames, Iowa: Iowa State University Press.Google Scholar
Taylor, W. D., Gates, M. A. & Berger, J. (1976). Morphological changes during the growth cycle of axenic and monoxenic Tetrahymena pyriformis. Canadian Journal of Zoology 54, 20112018.CrossRefGoogle ScholarPubMed
Weindurch, R. H. & Doerder, F. P. (1975). Age-dependent micronuclear deterioration in Tetrahymena pyriformis, syngen 1. Mechanisms in Ageing and Development 4, 263279.CrossRefGoogle Scholar
Woodard, J., Kaneshiro, E. S. & Gorovsky, M. A. (1972). Cytochemical studies on the problem of macronuclear subnuclei in Tetrahymena. Genetics 70, 251260.CrossRefGoogle ScholarPubMed