Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-13T22:42:21.588Z Has data issue: false hasContentIssue false

Gene action in the mammalian X-chromosome

Published online by Cambridge University Press:  14 April 2009

Hans Grüneberg
Affiliation:
Department of Animal Genetics, University College London

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Contrary to opinions expressed by various authors, the phenotype of heterozygotes for mammalian sex-linked genes gives no support for the Lyon hypothesis (L.H.). Evidence, mainly from the mouse, shows that in such heterozygotes, both alleles act together as in autosomal genes.

In the present paper, it is shown that neither the behaviour of double heterozygotes for sex-linked genes nor that of X-autosome translocations provides independent evidence in favour of the L.H.: in each case, the interpretation depends on that of the behaviour of single heterozygotes and hence fails to discriminate. Moreover, new facts from both types of situation are also contrary to the L.H. In particular, a unified interpretation which fits the behaviour of genes in all known types of X-autosome translocations in the mouse requires the assumption that partial inhibition of gene action happens in both X-chromosomes of mouse females, and presumably the females of other mammals. The new hypothesis is consistent with all relevant genetical facts and, like the L.H., it also accounts for dosage compensation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1967

References

REFERENCES

Cattanach, B. M. (1961). A chemically-induced variegated-type position effect in the mouse. Z. VererbLehre, 92, 165182.Google ScholarPubMed
Cattanach, B. M. (1963). The inactive-X hypothesis and position effects in the mouse. Genetics, 48, 884885 (Abstr.).Google Scholar
Cattanach, B. M. (1966). The location of Cattanach's translocation in the X-chromosome linkage of the mouse. Genet. Res. 8, 253256.CrossRefGoogle ScholarPubMed
Cattanach, B. M. & Isaacson, J. H. (1965). Genetic control over the inactivation of autosomal genes attached to the X-chromosome. Z. VererbLehre, 96, 313323.Google ScholarPubMed
Falconer, D. S., Fraser, A. S. & King, J. W. B. (1951). The genetics and development of ‘crinkled’, a new mutant in the house mouse. J. Genet. 50, 324344.CrossRefGoogle ScholarPubMed
Grüneberg, H. (1965). Genes and genotypes affecting the teeth of the mouse. J. Embryol. exp. Morph. 14, 137159.Google ScholarPubMed
Grüneberg, H. (1966 a). The molars of the tabby mouse, and a test of the ‘single-active X-chromosome’ hypothesis. J. Embryol. exp. Morph. 15, 223244.Google Scholar
Grüneberg, H. (1966 b). More about the tabby mouse and about the Lyon hypothesis. J. Embryol. exp. Morph. 16, 569590.Google ScholarPubMed
Grüneberg, H. (1967). Sex-linked genes in man and the Lyon hypothesis. Ann. hum. Genet. 30, 239257.CrossRefGoogle ScholarPubMed
Lewis, E. B. (1950). The phenomenon of position effect. Adv. Genet. 3, 73115.CrossRefGoogle ScholarPubMed
Lyon, M. F. (1961). Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature, Lond. 190, 372373.CrossRefGoogle ScholarPubMed
Lyon, M. F. (1962). Sex chromatin and gene action in the mammalian X-chromosome. Am. J. hum. Genet. 14, 135148.Google ScholarPubMed
Lyon, M. F. (1963). Attempts to test the inactive-X theory of dosage compensation in mammals. Genet. Res. 4, 93103.CrossRefGoogle Scholar
Lyon, M. F. (1966). Lack of evidence that inactivation of the mouse X-chromosome is incomplete. Genet. Res. 8, 197203.CrossRefGoogle ScholarPubMed
Lyon, M. F., Searle, A. G., Ford, C. E. & Ohno, S. (1964). A mouse translocation suppressing sex-linked variegation. Cytogenetics, 3, 306323.CrossRefGoogle ScholarPubMed
Ohno, S. & Cattanach, B. M. (1962). Cytological study of an X-autosome translocation in Mus musculus. Cytogenetics, 1, 129140.CrossRefGoogle ScholarPubMed
Ohno, S. & Lyon, M. F. (1965). Cytological study of Searle's X-autosome translocation in Mus musculus. Chromosoma, 16, 90100.CrossRefGoogle ScholarPubMed
Phillips, R. J. S. (1961). ‘Dappled‘, a new allele at the mottled locus in the house mouse. Genet. Res. 2, 290295.CrossRefGoogle Scholar
Russell, L. B. (1963). Mammalian X-chromosome action: inactivation limited in spread and in region of origin. Science, N.Y. 140, 976978.CrossRefGoogle ScholarPubMed
Russell, L. B. (1964). Another look at the single-active-X hypothesis. Trans. N.Y. Acad. Sci., ser. II, 26, 726736.CrossRefGoogle Scholar
Russell, L. B. & Bangham, J. W. (1961). Variegated-type position effects in the mouse. Genetics, 46, 509525.CrossRefGoogle ScholarPubMed
Russell, L. B., Bangham, J. W. & Montgomery, C. S. (1964). The use of X-autosome translocations in the mouse for the study of autosomal genes. Genetics, 50, 281282 (Abstr.).Google Scholar
Russell, L. B., Bangham, J. W. & Saylors, C. L. (1962). Delimitation of chromosomal regions involved in V-type position effects from X-autosome translocations in the mouse. Genetics, 47, 981982 (Abstr.).Google Scholar
Russell, L. B. & Montgomery, C. S. (1965). The use of X-autosome translocations in locating the X-chromosome inactivation center. Genetics, 52, 470471 (Abstr.).Google Scholar