Hostname: page-component-788cddb947-m6qld Total loading time: 0 Render date: 2024-10-19T06:35:33.493Z Has data issue: false hasContentIssue false

Influence of parental strains on the germination of Phycomyces blakesleeanus zygospores

Published online by Cambridge University Press:  14 April 2009

María José F. Sarabia
Affiliation:
Departamento de Genética, Facultad de Biología, Universidad de Salamanca, 37008-Salamanca, Spain
Arturo P. Eslava*
Affiliation:
Departamento de Genética, Facultad de Biología, Universidad de Salamanca, 37008-Salamanca, Spain
María Isabel Alvarez
Affiliation:
Departamento de Genética, Facultad de Biología, Universidad de Salamanca, 37008-Salamanca, Spain
*
* Corresponding authors.

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Phycomyces blakesleeanus wild-type NRRL1555( − ), the standard strain, when crossed with UBC21( + ), another wild type, gives zygospores that germinate in 50–60 days. By backcrossing to UBC21 and selecting for shorter dormancy we have isolated a ( − ) strain, A803, and a ( + ) strain A804, which when crossed give zygospores that germinate in 32 days, the shortest dormancy period found in Phycomyces. The same result was obtained when A803 was crossed with UBC21. Zygospore dormancy decreased as the parental strains became more isogenic with UBC21, but the number of zygospores giving germsporangia with viable germspores also decreased to zero in the third backcross. The existence of germspore-killer alleles in the strain UBC21 is postulated. The strains of shortest dormancy can be used as helper strains (Orejas et al. 1985) in sexual crosses. Tetrad analysis of the cross NRRL1554 × S102, a two-factor cross, showed 90% of reciprocal ditypes plus tetratypes in the progeny, indicating that the ( + ) wild-type strain NRRL1554, when crossed with the standard strain, gives regular meiosis and, contrary to current beliefs, may be used in Phycomyces genetic analysis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

References

Alvarez, M. I. & Eslava, A. P. (1983). Isogenic strains of Phycomyces blakesleeanus suitable for genetic analysis. Genetics 105, 873879.CrossRefGoogle ScholarPubMed
Bergman, K., Burke, P. V., Cerdá-Olmedo, E., David, C. N., Delbruck, M., Foster, K. W., Goodell, E. W., Heisenberg, M., Meissner, G., Zalokar, M., Dennison, D. S. & Shoropshire, W. Jr (1969). Phycomyces. Bacteriological Reviews 3, 99157.CrossRefGoogle Scholar
Bergman, K., Eslava, A. P. & Cerdá-Olmedo, E. (1973). Mutants of Phycomyces with abnormal phototropism. Molecular and General Genetics 123, 116.CrossRefGoogle ScholarPubMed
Blakeslee, A. F. (1904). Sexual reproduction in the Mucorineae. Proceedings of the American Academy of Arts and Sciences, U.S.A. 40; 205319.CrossRefGoogle Scholar
Blakeslee, A. F. (1906). Zygospore germinations in the Mucorineae. Annales Mycologici 4; 128.Google Scholar
Burgeff, H. (1915). Untersuchungen über Variabilität, Sexualität und Erblichkeit bei Phycomyces nitens kuntze. II. Flora 108; 353448.Google Scholar
Cerdá-Olmedo, E. (1974). Phycomyces. In Handbook of Genetics, vol. 1 (ed. King, R. C.), pp. 343357. New York: Plenum Press.Google Scholar
Cerdá-Olmedo, E. (1975). The genetics of Phycomyces blakesleeanus. Genetical Research 25; 285296.CrossRefGoogle ScholarPubMed
Cerdá-Olmedo, E. (1977). Behavioral genetics of Phycomyces. Annual Review of Microbiology 31; 535547.CrossRefGoogle ScholarPubMed
Cerdá-Olmedo, E. (1985). Carotene mutants of Phycomyces. In Methods in Enzymology, vol. 110 (ed. Law, J. H and Rilling, H. C.), pp. 220243. New York: Academic Press.Google Scholar
Eslava, A. P. (1987). Genetics. In Phycomyces (ed. Cerdá-Olmedo, E. and Lipson, E. D.), pp. 2748. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory.Google Scholar
Eslava, A. P., Alvarez, M. I., Burke, P. V. & Delbruck, M. (1975 a). Genetic recombination in sexual crosses of Phycomyces. Genetics 80; 445462.CrossRefGoogle ScholarPubMed
Eslava, A. P., Alvarez, M. I. & Delbruck, M. (1975 b). Meiosis in Phycomyces. Proceedings of the National Academy of Sciences, U.S.A. 72; 40764080.CrossRefGoogle ScholarPubMed
Fincham, J. R. S., Day, P. R. & Radford, A. (1979). Fungal Genetics, 4th edition. Oxford: Blackwell Scientific Publications.Google Scholar
Galland, P. & Lipson, E. D. (1984). Photophysiology of Phycomyces blakesleeanus. Photochemistry and Photo-biology 40; 795800.CrossRefGoogle Scholar
Galland, P. & Lipson, E. D. (1987). Blue-light reception in Phycomyces phototropism: Evidence for two photo-systems operating in low- and high- intensity ranges. Proceedings of the National Academy of Sciences, U.S.A. 84; 104, 108.Google Scholar
Hocking, D. (1967). Zygospore initiation, development and germination in Phycomyces blakesleeanus. Transactions of the British Mycological Society 50; 207220.CrossRefGoogle Scholar
Orejas, M., Pelaez, M. I., Alvarez, M. I. & Eslava, A. P. (1987). A genetic map of Phycomyces blakesleeanus. Molecular and General Genetics 210; 6976.CrossRefGoogle ScholarPubMed
Orejas, M., Suarez, T. & Eslava, A. P. (1985). Helper strains for shortening the dormancy in Phycomyces blakesleeanus. Current Genetics 9; 369372.CrossRefGoogle Scholar
Schwartz, W. (1926). Die Zygoten von Phycomyces blakesleeanus Untersuchunger über die Bedingunger ihrer Bildung und Keimund. Flora 21; 139.Google Scholar
Sussman, A. S. (1969). The prevalence and role of dormancy. In The Bacterial Spore (ed. Gould, G. W. and Hurst, A.), pp. 138. London, New York: Academic Press.Google Scholar
Sussman, A. S. (1979). Activators of fungal spore germination. In The Fungal Spore (ed. Weber, D. J. and Hess, W. M.), pp. 101139. New York: Wiley.Google Scholar
Sutter, R. P. (1975). Mutation affecting sexual development in Phycomyces blakesleeanus. Proceedings of the National Academy of Sciences, U.S.A. 72; 127130CrossRefGoogle ScholarPubMed
Sutter, R. P. (1977). Regulation of the first stage of sexual development in Phycomyces blakesleeanus and other mucoraceous fungi. In Eukaryotic Microbes as Model Developmental Systems (ed. O'Day, D. H. and Horgen, P. A.), pp. 251272. New York: Marcel Decker.Google Scholar
Sutter, R. P. & Whitaker, J. P. (1981). Zygophore-stimulating precursors (pheromones) of Trisporic acids active in (−) Phycomyces blakesleeanus. The Journal of Biological Chemistry 256; 23342341.CrossRefGoogle ScholarPubMed
Van Laere, A. J. (1986). Biochemistry of spore germination in Phycomyces. FEMS Microbiology Reviews 32; 189198.CrossRefGoogle Scholar