Hostname: page-component-5c6d5d7d68-ckgrl Total loading time: 0 Render date: 2024-08-11T01:35:02.306Z Has data issue: false hasContentIssue false

Interspecific mitochondrial DNA transfer and the colonization of Scandinavia by mice

Published online by Cambridge University Press:  14 April 2009

Ulf Gyllensten
Affiliation:
Department of Genetics, University of Stockholm, S-10691 Stockholm, Sweden Department of Biochemistry, University of California, Berkeley, CA 94720, USA
Allan C. Wilson
Affiliation:
Department of Biochemistry, University of California, Berkeley, CA 94720, USA

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Restriction enzymes were used to search for genetic variability at 162 cleavage sites in mitochondrial DNA (mtDNA) purified from 22 mice caught at seven Swedish localities. Although all of these mice bear the nuclear genes of Mus musculus, they bear the mtDNA of M. domesticus exclusively. Yet, some of the Swedish localities are 750 km away from the hybrid zone between these two species. Furthermore, only one type of mtDNA was found at the seven Swedish localities; this type was found before at an eighth locality in Sweden as well as in Jutland north of the hybrid zone. The apparent lack of mtDNA divergence in the mouse population of Sweden contrasts with the extensive divergence usually found within other geographic areas in Europe, Africa and North America. Electrophoretic analysis of proteins encoded by nuclear genes indicates that the Swedish mice have lower average heterozygosity than Danish and Central European populations of musculus mice. These findings lead us to suggest that the source of the commensal mouse population in Sweden was a small propagule that originated from a population situated only a few kilometres to the east of the point at which the hybrid zone on the European mainland meets the Baltic Sea, namely on East Holstein. Such a founder event may have been associated with the spread of farming from north Germany into Sweden about 4000 years ago.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

References

Avise, J. C., Shapira, J. F., Daniel, S. W., Aquadro, C. F. & Lansman, R. A. (1983). Mitochondrial DNA differentiation during the speciation process in Peromyscus. Molecular Biology and Evolution 1, 3856.Google ScholarPubMed
Bibb, M. J., Van Etten, R. A., Wright, C. T., Walberg, M. W. & Clayton, D. A. (1981). Sequence and gene organization of mouse mitochondrial DNA. Cell 26, 167180.CrossRefGoogle ScholarPubMed
Boursot, P., Bonhomme, F., Britton-Davidian, J., Catalan, J., Yonekawa, H., Orsini, P., Guerasimov, S. & Thaler, L. (1984). Introgression differentielle des génomes nucléaires et mitochondriaux chez deux semi-espèces européennes de souris. Comptes rendus de académie des Sciences, Paris, t299, série III 9, 365370.Google Scholar
Brown, W. M. (1980). Polymorphism in mitochondrial DNA as revealed by restriction endonuclease analysis. Proceedings of the National Academy of Sciences, USA 77, 3605–3509.CrossRefGoogle ScholarPubMed
Brown, G. G. & Simpson, M. W. (1981). Intra- and interspecific variation of the mitochondrial genome in Rattus norvegicus and Rattus rattus: Restriction enzyme analysis of variant mitochondrial DNA molecules. Genetics 97, 125143.CrossRefGoogle ScholarPubMed
Brown, G. G. & Simpson, M. W. (1982). Novel features of animal mtDNA evolution as shown by sequences of two rat cytochrome oxidase subunit II genes. Proceedings of the National Academy of Sciences, USA 79, 32463250.CrossRefGoogle ScholarPubMed
Cann, R. L., Brown, W. M. & Wilson, A. C. (1984). Polymorphic sites and the mechanism of evolution in human mitochondrial DNA. Genetics 106, 479499.CrossRefGoogle ScholarPubMed
Clark, G. (1975). The Earlier Stone Age Settlement of Scandinavia. Cambridge University Press.Google Scholar
Ferris, S. D., Wilson, A. C. & Brown, M. W. (1981). Evolutionary tree for apes and humans based on cleavage maps of mitochondrial DNA. Proceedings of the National Academy of Sciences, USA 78, 24322436.CrossRefGoogle ScholarPubMed
Ferris, S. D., Sage, R. D. & Wilson, A. C. (1982). Evidence from mtDNA sequences that common laboratory strains of inbred mice are descended from a single female. Nature 295, 163165.CrossRefGoogle ScholarPubMed
Ferris, S. D., Sage, R. D., Huang, C.-M., Nielsen, J. T., Ritte, U. & Wilson, A. C. (1983 a). Flow of mitochondrial DNA across a species boundary. Proceedings of the National Academy of Sciences, USA 80, 22902294.CrossRefGoogle ScholarPubMed
Ferris, S. D., Sage, R. D., Prager, E. M., Ritte, U. & Wilson, A. C. (1983 b). Mitochondrial DNA evolution in mice. Genetics 105, 681721.CrossRefGoogle ScholarPubMed
Gyllensten, U., Wharton, D. & Wilson, A. C. (1985). Maternal inheritance of mitochondrial DNA during backcrossing of two species of mice. Journal of Heredity 76, 321324.CrossRefGoogle ScholarPubMed
Hunt, W. G. & Selander, R. K. (1973). Biochemical genetics of hybridisation in European house mice. Heredity 31, 1133.CrossRefGoogle ScholarPubMed
Marshall, J. T. Jr. (1981). Taxonomy. In The Mouse in Biomedical Research, vol. I (ed. Foster, H. L., Small, J. D. and Fox, J. G.), pp. 1726. New York: Academic Press.Google Scholar
Marshall, J. T. Jr. & Sage, R. D. (1981). Taxonomy of the house mouse. Symposia of the Zoological Society of London 47, 1525.Google Scholar
Moriwaki, K., Yonekawa, H., Gotoh, O., Minezawa, M., Winking, H. & Gropp, A. (1984). Implications of the genetic divergence between European wild mice with Robertsonian translocations from the viewpoint of mitochondrial DNA. Genetical Research, Cambridge 43, 277287.CrossRefGoogle ScholarPubMed
Nei, M. (1972). Genetic distance between populations. American Naturalist 106, 283292.CrossRefGoogle Scholar
Nei, M. (1975). Molecular Population Genetics and Evolution. Amsterdam: North-Holland Publishing Company.Google ScholarPubMed
Nei, M. & Li, W.-H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences, USA 76, 52695273.CrossRefGoogle ScholarPubMed
Powell, J. R. (1983). Interspecific cytoplasmic gene flow in the absence of nuclear gene flow: evidence from Drosophila. Proceedings of the National Academy of Sciences, USA 80, 492495.CrossRefGoogle ScholarPubMed
Sage, R. D. (1981). Wild mice. In The Mouse in Biomedical Research, vol. I (ed. Foster, H. L., Small, J. D. and Fox, J. G.), pp. 3990. New York: Academic Press.Google Scholar
Sage, R. D., Whitney, J. B. III. & Wilson, A. C. (1986). Genetic analysis of a hybrid zone between domesticus and musculus mice (Mus musculus complex): hemoglobin polymorphisms. In Current Topics in Microbiology and Immunology, vol. 127 (ed. Potter, M., Nadeau, J. H. and Cancro, M. P.), pp. 7585. Berlin, Heidelberg: Springer-Verlag.Google Scholar
Selander, R. K., Hunt, W. G. & Yang, S. Y. (1969). Protein polymorphism and genic heterozygosity in two European subspecies of the house mouse. Evolution 23, 370390.CrossRefGoogle Scholar
Takahata, N. (1985). Introgression of extranuclear genomes in finite populations: nucleo-cytoplasmic incompatibility. Genetical Research, Cambridge 45, 179194.CrossRefGoogle ScholarPubMed
Takahata, N. & Palumbi, S. R. (1985). Extranuclear differentiation and gene flow in the finite island model. Genetics 109, 441457.CrossRefGoogle ScholarPubMed
Yonekawa, H., Gotoh, O.Tagashira, Y., Wang, S., Tu, Z., Bonhomme, F., Miyashita, N. & Moriwaki, K. (1984). Phylogenetic relationships among geographical races of Mus molossinus molossinus and its relatives based on restriction analysis of mtDNA. IV International Workshop on Mouse Molecular Genetics, Montpellier, 18–20 September, Abstract.Google Scholar
Yonekawa, H., Moriwaki, K., Gotoh, O., Miyashita, S., Migita, N., Bonhomme, F., Hjorth, J. P., Petras, M. L. & Tagashira, Y. (1982). Origins of laboratory mice deduced from restriction patterns of mitochondrial DNA. Differentiation 22, 222226.CrossRefGoogle ScholarPubMed
van Zegeren, K. & van Oortmerssen, G. A. (1981). Frontier disputes between the West- and East-European house mouse in Schleswig-Holstein, West Germany. Zeitschrifi Saugetierkunde 46, 363369.Google Scholar
Wilson, A. C., Cann, R. L., Carr, S. M., George, M. Jr., Gyllensten, U., Helm-Bychowski, K. M., Higuchi, R. G., Palumbi, S. R., Prager, E. M., Sage, R. D. & Stoneking, M. (1985). Mitochondrial DNA and Two Perspectives on Evolutionary Genetics. Biological Journal of the Linnean Society 26, 375400.CrossRefGoogle Scholar