Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-12T04:24:33.889Z Has data issue: false hasContentIssue false

The liver/erythrocyte pyruvate kinase gene complex [Pk-1] in the mouse: regulatory gene mutations

Published online by Cambridge University Press:  14 April 2009

Lesley A. Fitton
Affiliation:
AFRC Institute of Animal Physiology and Genetics Research, Roslin, Midlothian, EH25 9PS
Morag Davidson
Affiliation:
AFRC Institute of Animal Physiology and Genetics Research, Roslin, Midlothian, EH25 9PS
Karen J. Moore
Affiliation:
Mammalian Genetics Laboratory, ABL-Basic Research Program, NCI-Frederick Cancer Research Facility, P.O. Box B, Frederick MD, 21702, USA
Daniel J. Charles
Affiliation:
Institut für Süugetiergenetik, Gesellschaft für Strahlen- und Umweltforschung, D-8042 Neuherberg, Federal Republic of, Germany
Walter Pretsch
Affiliation:
Institut für Süugetiergenetik, Gesellschaft für Strahlen- und Umweltforschung, D-8042 Neuherberg, Federal Republic of, Germany
Robert C. Elston
Affiliation:
Department of Biometry and Genetics, LouisianaState University Medical Center, New Orleans, LA 70112, U.S.A.
Graham Bulfield*
Affiliation:
AFRC Institute of Animal Physiology and Genetics Research, Roslin, Midlothian, EH25 9PS
*
*Corresponding author.

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Nine enzyme activity variants and one charge variant of liver/erythrocyte pyruvate kinase have been found amongst laboratory and wild mice. Four of the enzyme activity variants were previously reported to be caused by allelic differences in the structural gene, Pk-ls. Analysis of two putative regulatory gene mutations is now reported, both of which map at, or close to, the structural gene on chromosome 3. One of these mutations, in the inbred strain SWR, is tissue specific, affecting enzyme concentration in the liver but not the erythrocyte the other, which arose in a mutation experiment, doubles the enzyme concentration in both tissues. The organization and the nomenclature in the [Pk-1] gene complex are discussed and are compared with the organization of other comprehensively analysed gene complexes in the mouse.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

References

Akaike, H. (1977). On entropy maximization principle. In Applications of Statistics (ed. Krishnaiah, P. R.), pp. 2741. Amsterdam: North Holland.Google Scholar
Bonhomme, F.Catalan, J.Britton-Davidian, J.Chapman, V. M.Moriwaki, K.Nevo, E. & Thaler, L. (1984). Biochemical diversity and evolution in the genus. Mus. Biochemical Genetics 22, 275303.CrossRefGoogle ScholarPubMed
Bulfield, G.Hall, J. M. & Tsakas, S. (1984). Incidence of inherited enzyme activity variants in feral mouse populations. Biochemical Genetics 22, 133138.CrossRefGoogle ScholarPubMed
Bulfield, G. & Moore, E. A. (1974). Semi-automated assays for enzymopathies of carbohydrate metabolism in liver and erythrocytes using a reaction rate analyser. Clinica Chemica Acta 53, 265271.CrossRefGoogle ScholarPubMed
Bulfield, G.Moore, E. A. & Kacser, H. (1978). Genetic variation in activity of the enzymes of glycolysis and gluconeogenesis between inbred strains of mice. Genetics 89, 551561.CrossRefGoogle ScholarPubMed
Charles, D. J. & Pretsch, W. (1984). A new pyruvate kinase mutation with hyperactivity in the mouse. Biochemical Genetics 22 743750.CrossRefGoogle ScholarPubMed
Charles, D. J. & Pretsch, W. (1987). Linear dose-response relationship of erythrocyte enzyme-activity mutations in offspring of ethylnitrosourea-treated mice. Mutation Research 176, 8191.CrossRefGoogle ScholarPubMed
Elston, R. C. (1984). The genetic analysis of quantitative trait differences between two homozygous lines. Genetics 108 733744.CrossRefGoogle ScholarPubMed
Fitton, L. A. & Bulfield, G. (1989). The liver/erythrocyte gene complex [Pk-1] in the mouse: structural gene mutations. Genetical Research 53 105110.CrossRefGoogle ScholarPubMed
Harada, K.Saheki, S.Wada, K. & Tanaka, T. (1978). Purification of four pyruvate kinase isozymes of rats by affinity chromatography. Biochimica et Biophysica Acta 524, 327339.CrossRefGoogle Scholar
Imamura, K. & Tanaka, T. (1972). Multi-molecular forms of pyruvate kinase from rat and other mammalian tissues. 1. Electrophoretic studies. Journal of Biochemistry 71, 10431051.CrossRefGoogle Scholar
Innoue, H.Noguchi, T. & Tanaka, T. (1986). Complete amino acid sequence of the rat L-type pyruvate kinase deducted from the cDNA sequence. European Journal of Biochemistry 154, 465469.CrossRefGoogle Scholar
Lee, W.Haslinger, A.Karin, M. & Tijian, R. (1987). Activation of transcription by two factors that bind promoter and enhancer sequences of the human metallothionein gene and SV40. Nature 325 368372.CrossRefGoogle ScholarPubMed
Lone, Y.-C.Simon, M.-P.Kahn, A. & Marie, J. (1986). Complete nucleotide and deduced animo acid sequences of the rat L-type pyruvate kinase. FEBS Letters 195, 97100.CrossRefGoogle Scholar
Lundin, L. -G. (1979). Evolutionary conservation of large chromosomal segments reflected in mammalian gene maps. Clinical Genetics 16, 7281.CrossRefGoogle ScholarPubMed
Lusis, A. J.Tomino, S. & Paigen, K. (1977). Inheritance in mice of the membrane anchor protein Egasyn: The Eg locus determines Egasyn levels. Biochemical Genetics 15, 115122.CrossRefGoogle ScholarPubMed
Marie, J.Simon, M. -P.Dreyfus, J. -C. & Kahn, A. (1981). One gene but two messenger RNAs encode liver L and red cell Li pyruvate kinase subunits. Nature 292, 7072.CrossRefGoogle Scholar
Martin, S. A. M.Taylor, B. A.Watanabe, T. & Bulfield, G. (1984). Histidine decarboxylase phenotypes of inbred mouse strains: a regulatory locus (Hdc) determines kidney enzyme concentration. Biochemical Genetics 22, 305322.CrossRefGoogle ScholarPubMed
Middleton, R. J.Martin, S. A. M. & Bulfield, G. (1987). A new regulatory gene in the histidine decarboxylase gene complex determines the responsiveness of the mouse kidney enzyme to testosterone. Genetical Research 49, 6167.CrossRefGoogle ScholarPubMed
Moore, K. J. (1981). The biochemical genetics of pyruvate kinase in the mouse. Ph.D thesis University of Leicester, UK.Google Scholar
Moore, K. J. & Bulfield, G. (1981). An allele (Pk-1b) from wild-caught mice that effects the activity and kinetics of erythrocyte and liver pyruvate kinase. Biochemical Genetics 19, 71781.CrossRefGoogle Scholar
Noguchi, T.Inoue, H.Chen, H.-L.Matsubara, K. & Tanaka, T. (1983). Molecular cloning of DNA complementary to rat L-type pyruvate kinase on RNA. Nutritional and hormonal regulation of L-type pyruvate kinase mRNA concentration. Journal of Biological Chemistry 258, 1522015223.CrossRefGoogle ScholarPubMed
Paigen, K. (1979). Acid hydrolases as models of genetic control. Annual Review of Genetics 13, 417469.CrossRefGoogle ScholarPubMed
Pfister, K.Paigen, K.Watson, G. & Chapman, V. (1982). Expression of β-glucoronidase haplotypes in prototype and congenic mouse strains. Biochemical Genetics 20, 519526.CrossRefGoogle Scholar
Saheki, S.Harada, K.Sanno, Y. & Tanaka, T. (1978). Hybrid isozymes of rat pyruvate kinase. Their subunit structure and Cellularity changes in the liver. Biochimica et Biophysica Acta 526, 116128.CrossRefGoogle Scholar
Simon, M.-P.Besmond, , Cottreau, D.Weber, A.Chaumet-Riffaud, P.Dreyfus, J.-C.Thepat, J. S.Marie, J. & Kahn, A. (1983). Molecular cloning of cDNA rat L-type pyruvate kinase and aldolase B. Journal of Biological Chemistry 259 17981802.Google Scholar
Simon, M.-P.Marie, J.Bertrand, O. & Kahn, A. (1982). Molecular organisation of the human L' and L pyruvate kinase. Biochimica et Biophysica Acta 709 17.CrossRefGoogle Scholar
Sola, B.Simon, D.Mattei, M.-G.Fichelson, S.Borderaux, D.Tambourin, P. E.Guenet, J.-L. & Gisselbrecht, S. (1988). FIM-I, FIM-II/C-FMS, and FIM-III. Three common integration sites of friend murine leukemia virus in myeloblastic leukemias map to mouse chromosomes 13, 18 and 3, respectively. Journal of Virology 62, 3973–8.CrossRefGoogle Scholar