Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-17T10:31:34.069Z Has data issue: false hasContentIssue false

The organization and composition of the ribosomal RNA gene non-transcribed spacer of D. busckii is unique among the drosophilids

Published online by Cambridge University Press:  14 April 2009

James M. Slavicek
Affiliation:
Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, 06268
Hallie M. Krider
Affiliation:
Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, 06268

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Several ribosomal RNA (rRNA) genes from D. busckii were cloned and characterized. The prominent repeat classes have lengths of 12·8 and 13·6 kb and lack 28S introns. rRNA genes were cloned containing 28S insertions which exhibit heterogeneity in size and sequence. The non-transcribed spacer (NTS) contains two regions composed of different repeated sequences that exhibit pronounced instability in HB 101. NTS region II, centrally located within the NTS, contains predominately 11 or 16 HincII generated 160 bp repeats. NTS region III, next to the 18S gene, contains repeats that are variable in number, and are either heterogeneous in length or are dispersed within unique sequences. The organization and composition of the rRNA gene NTS of D. busckii is different in comparison to the NTSs of other drosophilids. In addition, the pronounced instability of two different NTS regions is unique in comparison to all other cloned rRNA genes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

References

Arnheim, N. (1979). Characterization of mouse ribosomal gene fragments purified by molecular cloning. Gene 7, 8996.CrossRefGoogle ScholarPubMed
Arnheim, N. & Kuehn, M. (1979). The genetic behaviour of a cloned mouse ribosomal DNA segment mimics mouse ribosomal gene evolution. Journal of Molecular Biology 134, 743765.CrossRefGoogle ScholarPubMed
Barnett, T. & Rae, P. M. M. (1979). A 9·6 kb intervening sequence in D. virilis rDNA and sequence homology in rDNA interruptions of diverse species of Drosophila and other diptera. Cell 16, 763775.CrossRefGoogle Scholar
Beckingham, K. (1982). Insect ribosomal DNA. In The Cell Nucleus, vol. X, part A (ed. Busch, H. and Rothblum, L.), pp. 205269. New York: Academic Press.Google Scholar
Boseley, P., Moss, T., Machler, M., Portmann, R. & Birnsteil, M. (1979). Sequence organization of the spacer DNA in a ribosomal gene unit of Xenopus laevis. Cell 17, 1931.CrossRefGoogle Scholar
Coen, E. S. & Dover, G. A. (1982). Multiple Pol I initiation sequences in rDNA spacers of Drosophila melanogaster. Nucleic Acids Research 10, 70177026.CrossRefGoogle Scholar
Coen, E., Strachen, T. & Dover, G. (1982). Dynamics of concerted evolution of ribosomal DNA and histone gene families in the melanogaster species subgroup of Drosophila. Journal of Molecular Biology 158, 1735.CrossRefGoogle ScholarPubMed
Dawid, I. B., Wellauer, P. K. & Long, E. O. (1978). Ribosomal RNA in Drosophila melanogaster I. Isolation and characterization of cloned fragments. Journal of Molecular Biology 126, 749768.CrossRefGoogle Scholar
Erickson, J. M. & Schmickel, R. D. (1985). A molecular basis for discrete size variation in human ribosomal DNA. American Journal of Human Genetics 37, 311325.Google ScholarPubMed
Grummt, I., Maier, U., Ohrlein, A., Hassouna, N. & Bachellerie, J. (1985). Transcription of mouse rDNA terminates downstream of the 3′ end of the 28S RNA and involves interaction of factors with repeated sequences in the 3′ spacer. Cell 43, 801810.CrossRefGoogle ScholarPubMed
Hanahan, D. (1983). Studies of transformation of Escherichia coli with plasmids. Journal of Molecular Biology 166, 557580.CrossRefGoogle ScholarPubMed
Kohorn, B. D. & Rae, P. M. M. (1982). Nontranscribed spacer sequences promote in vitro transcription of Drosophila ribosomal DNA. Nucleic Acids Research 10, 68796886.CrossRefGoogle ScholarPubMed
Moss, T. (1982). Transcription of cloned Xenopus laevis ribosomal DNA microinjected into Xenopus oocytes, and the identification of an RNA polymerase I promotor. Cell 30, 835842.CrossRefGoogle Scholar
Moss, T. (1983). A transcriptional function for the repetitive ribosomal spacer in Xenopus laevis. Nature 302, 223228.CrossRefGoogle ScholarPubMed
Niles, E. G., Sutiphong, J. & Haque, S. (1981). Structure of the Tetrahymenia pyriformis rRNA gene. Nucleotide sequence of the transcription initiation region. Journal of Biological Chemistry 256, 1284912856.CrossRefGoogle Scholar
Reeder, R. H., Roan, J. G. & Dunaway, M. (1983). Spacer regulation of Xenopus ribosomal gene transcription: competition in oocytes. Cell 35, 449456.CrossRefGoogle ScholarPubMed
Reeder, R. H. & Roan, J. G. (1984). The mechanism of nucleolar dominance in Xenopus hybrids. Cell 38, 3944.CrossRefGoogle ScholarPubMed
Schmidt, E. R., Godwin, E. A., Keyl, H. G. & Israelewski, N. (1982). Cloning and analysis of ribosomal DNA of Chironomus thummi piger and Chironomus thummi thummi. Chromosoma 87, 389407.CrossRefGoogle ScholarPubMed
Simmen, F. A., Dolecki, G. J., Carlos, R., Mandel, M. & Humphreys, T. (1985). Structural analysis of ribosomal genes from the Hawaiian sea urchin species, Tripneustes gratilla. DNA 4, 385393.CrossRefGoogle ScholarPubMed
Sollner-Webb, B., Wilkinson, J. K., Roan, J. & Reeder, R. H. (1983). Nested control regions promote Xenopus ribosomal RNA synthesis by RNA polymerase I. Cell, 35, 199206.CrossRefGoogle ScholarPubMed
Tartof, K. D. & Perry, R. P. (1970). The 5S genes of Drosophila melanogaster. Journal of Molecular Biology 51, 171183.CrossRefGoogle Scholar
Throckmorton, L. (1975). The phylogeny, ecology and geography of Drosophila. In Handbook of Genetics, (ed. King, R. C.), vol. 3, pp. 421469. New York: Plenum Press.Google Scholar
Volpe, A. L., Simeone, A., D'Espisito, M., Scotto, L., Fidanza, V., Falco, A. & Boncinelli, E. (1985). Molecular analysis of the heterogeneity region of the human ribosomal spacer. Journal of Molecular Biology 183, 213223.CrossRefGoogle ScholarPubMed
Yang-Yen, H., Subrahmanyam, C. S., Cassidy, B. & Rothblum, L. I. (1985). Characterization of rat ribosomal DNA II. Identification of the highly repetitive DNA in the 3′ nontranscribed spacer. Journal of Molecular Biology 184, 389398.CrossRefGoogle Scholar
Yavachev, L. P., Georgiev, O. I., Braga, E. A., Avdonina, T. A., Bogomolva, A. E., Zhurking, V. B., Nosikov, V. V. & Hadjiolov, A. A. (1986). Nucleotide sequence analysis of the spacer regions flanking the rat rRNA transcription unit and identification of repetitive elements. Nucleic Acids Research 14, 27992810.CrossRefGoogle ScholarPubMed