Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-18T21:23:53.173Z Has data issue: false hasContentIssue false

Rec-mediated recombinational activity of two adjacent Chi elements in bacteriophage lambda

Published online by Cambridge University Press:  14 April 2009

Ezra Yagil
Affiliation:
Department of Biochemistry, The George S. Wise Faculty of Life sciences, Tel Aviv University, Tel Aviv, 69978, Israel
Inna Shtromas
Affiliation:
Department of Biochemistry, The George S. Wise Faculty of Life sciences, Tel Aviv University, Tel Aviv, 69978, Israel

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Chi is a sequence of eight nucleotide pairs which stimulate recBC-mediated recombination (Smith, 1983a, b). The effect of two linked Chis on recBC-mediated recombination was tested in bacteriophage lambda. It was noticed that the Chi element located on the right side of the phage chromosome is epistatic on the other Chi. These findings support a model proposed by Stahl et al. (1983) which suggests that the recombination machinery moves unidirectionaly in the phage chromosome from right to left. The results also suggest that in the presence of more than one Chi only the rightmost one stimulates recombination.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

References

REFERENCES

Daniels, D., Schroeder, J. L., Szybalsky, W., Sanger, F. & Blattner, F. R. (1983 a). A molecular map of coliphage lambda. In Lambda II (ed. Hendrix, R. W., Roberts, J. W., Stahl, F. W. and Weisberg, R. A.) pp. 519676. Cold Spring Harbor Laboratory, New York.Google Scholar
Daniels, D., Schroeder, J. L., Szybalsky, W., Sanger, F., Coulson, A. R., Hong, G. F., Hill, D. F., Peterson, G. B. & Blattner, F. R. (1983 b). Complete annotated lambda sequence. In Lambda II (ed. Hendrix, R. W., Roberts, J. W., Stahl, F. W. and Weisberg, R. A.), pp. 469517. Cold Spring Harbor Laboratory, New York.Google Scholar
Davis, R. W., Botstein, D. & Roth, J. R. (1980). A Manual for Genetic Engineering: Advanced Bacterial Genetics. Cold Spring Harbor Laboratory, New York.Google Scholar
Feiss, M. & Becker, A. (1983). DNA packaging and cutting. In Lambda II (ed. Hendrix, R. W., Roberts, J. W., Stahl, F. W. and Wiesberg, R. A.), pp. 305330. Cold Spring Harbor Laboratory, New York.Google Scholar
Hickson, I. D. & Emmerson, P. T. (1981). Identification of the Escherichia coli recB and recC gene products. Nature 294, 578580.CrossRefGoogle ScholarPubMed
Jorgensen, R. A., Rothstein, S. J. & Reznikoff, W. S. (1979). A restriction enzyme cleavage map of Tn5 and location of a region encoding neomycin resistance. Molecular and General Genetics 177, 6572.CrossRefGoogle ScholarPubMed
Kobayashi, I., Murialdo, H., Crasemann, J. M., Stahl, M. M. & Stahl, F. W. (1982). Orientation of cohesive end site (cos) determines the active orientation of χ sequences in stimulating RecA. recBC-mediated recombination in λ lytic infections. Proceedings of the National Academy of Sciences USA 79, 59815985.CrossRefGoogle ScholarPubMed
Kobayashi, I., Stahl, M. M., Leach, D. & Stahl, F. W. (1983). The interaction of cos with Chi is separable from DNA packaging in recA-recBC-mediated recombination of bacteriophage lambda. Genetics 104, 549570.CrossRefGoogle ScholarPubMed
Malone, R. E., Chattoraj, D. K., Faulds, D. H., Stahl, M. M. & Stahl, F. W. (1978). Hotspots for generalized recombination in the E. coli chromosome. Journal of Molecular Biology 121, 473491.CrossRefGoogle Scholar
Parkinson, J. S. & Huskey, R. J. (1971). Deletion mutants of bacteriophage lambda. Journal of Molecular Biology 56, 369384.CrossRefGoogle ScholarPubMed
Rosamund, J., Talender, K. M. & Linn, S. (1979). Modulation of the action of the recBC enzyme of Escherichia coli K12 by Ca++. Journal of Biological Chemistry 254, 86468652.CrossRefGoogle Scholar
Sasaki, M., Fujiyoshi, T., Shimada, K. & Taskagi, Y. (1982). Fine structure of the recB and recC gene region of Escherichia coli. Biochemical and Biophysical Research Communications 109, 414422.CrossRefGoogle ScholarPubMed
Smith, G. R. (1983 a). General recombination, In Lambda II (ed. Hendrix, R. W., Roberts, J. W., Stahl, F. W. and Weisberg, R. A.), pp. 175209. Cold Spring Harbor Laboratory, New York.Google Scholar
Smith, G. R. (1983 b). Chi hotspots of generalized recombinaton. Cell 34, 709710.CrossRefGoogle Scholar
Stahl, F. W. (1979). Special sites in generalized recombination. Annual Review of Genetics 13, 724.CrossRefGoogle ScholarPubMed
Stahl, F. W., Crasemann, J. M. & Stahl, M. M. (1975). Rec-mediated hotspot activity in bacteriophage λ. III. Chi mutations are site-mutations in stimulating Rec-mediated recombination. Journal of Molecular Biology 94, 203212.CrossRefGoogle Scholar
Stahl, F. W. & Stahl, M. M. (1977). Recombination pathway specificity of Chi. Genetics 86, 715725.CrossRefGoogle ScholarPubMed
Stahl, M. M., Kobayashi, I., Stahl, F. W. & Huntington, S. K. (1983). Activation of Chi, a recombinator, by the action of an endonuclease at a distant site. Proceedings of the National Academy of Sciences USA 80, 23102313.CrossRefGoogle Scholar
Taylor, A. & Smith, G. R. (1980). Unwinding and rewinding of DNA by the RecBC enzyme. Cell 22, 447457.CrossRefGoogle ScholarPubMed
Yagil, E., Dower, N. A., Chattoraj, D., Stahl, M., Pierson, C. & Stahl, F. W. (1980). Chi mutation in a transposon and the orientation dependence of Chi phenotype. Genetics 96, 4357.CrossRefGoogle Scholar