Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-15T20:54:33.389Z Has data issue: false hasContentIssue false

Supernova (spno), a new maternal mutant producing variable-sized cleavage nuclei in Drosophila

Published online by Cambridge University Press:  14 April 2009

M. Webster
Affiliation:
School of Biological Sciences, Flinders University of South Australia, Bedford Park, S.A. 5042
P. Moretti
Affiliation:
School of Biological Sciences, Flinders University of South Australia, Bedford Park, S.A. 5042
N. G. Brink
Affiliation:
School of Biological Sciences, Flinders University of South Australia, Bedford Park, S.A. 5042

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper describes a new recessive maternal lethal which disrupts normal nuclear division and migration during cleavage in Drosophila. We have named this gene locus supernova. Deletion mapping and in situ hybridization have located this gene to 88 F9/89 A1 on the polytene chromosome map. The terminal mutant phenotype is characterized by the presence of many variable-sized nuclei scattered throughout the cytoplasm of the unhatched egg. Following fertilization, the initial cleavage divisions appear delayed and are often accompanied by the formation of ring-like association of chromosomes and/or chromosome bridges. Although the polymerization of tubulin into spindles occurs during the initial cleavage divisions, there appears to be both a spatial and temporal uncoupling of DNA replication from the formation and proper functioning of spindles. Eventually no functional spindles are formed, but nuclei continue to increase in size and number with increasing age of the embryo following fertilization.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

References

Axton, J. M.Dombradi, V.Cohen, P. T. W. & Glover, D. M. (1990). One of the protein-phosphatase I isoenzymes in Drosophila is essential for mitosis. Cell 63, 3346.CrossRefGoogle ScholarPubMed
Chasan, R. & Anderson, K. V. (1989). The role ofeaster, an apparent serine protease, in organizing the dorsal ventral pattern of the Drosophila embryo. Cell 56, 391400.CrossRefGoogle ScholarPubMed
Compton, D. A.Yen, T. J. & Cleveland, D. W. (1991). Identification of novel centromere/kinetochoreassociated proteins using monoclonal antibodies generated against human mitotic chromosome scaffolds. Journal of Cell Biology 112, 10831097.CrossRefGoogle Scholar
Edgar, B. A.Kiehle, C. P. & Schubiger, G. (1986). Cell cycle control by the nucleo-cytoplasmic ratio in early Drosophila development. Cell 44, 365372.CrossRefGoogle ScholarPubMed
Edgar, B. A. & O'Farrell, P. H. (1989). Genetic control of cell division patterns in the Drosophila embryo. Cell 57, 177187.CrossRefGoogle ScholarPubMed
Edgar, B. A. & O'Farrell, P. H. (1990). The three postblastoderm cell cycles of Drosophila embryogenesis are regulated in G2 by string. Cell 62, 469480.CrossRefGoogle ScholarPubMed
Engels, W. R.Johnson-Schlitz, D. M.Eggleston, W. B. & Sved, J. (1990). High frequency P element loss in Drosophila is homolog dependent. Cell 62, 515525.CrossRefGoogle ScholarPubMed
Endow, S. A.Henikoff, S. & Soler-Niedziela, L. (1990). Mediation of meiotic and early mitotic chromosome segregation in Drosophila by a protein related to kinesin. Nature 345, 8183.CrossRefGoogle ScholarPubMed
Freeman, M.Nusslein-Volhard, C. & Glover, D. M. (1986). The dissociation of nuclear and centrosomal division in gnu, a mutation causing giant nuclei in Drosophila. Cell 46, 457468.CrossRefGoogle ScholarPubMed
Freeman, M. & Glover, D. M. (1987). The gnu mutation of Drosophila causes inappropriate DNA synthesis in unfertilized and fertilized eggs. Genes and Development 1, 924930.Google ScholarPubMed
Glover, D. M. (1991). Mitosis in the Drosophila embyro - in and out of control. Tends in Genetics 7, 125132.Google Scholar
Gonzales, C.Saunders, R. D. CCasal, J.Molina, I.Carmena, M.Ripoll, P. & Glover, D. M. (1990). Mutations at the asp locus of Drosophila lead to multiple free centrosomes in syncytial embryos, but restrict centrosome duplication in larval neuroblasts. Journal of Cell Science 96, 605616CrossRefGoogle Scholar
Gorbsky, G. J.Samnak, P. J. & Borisy, G. G. (1987). Chromosomes move poleward in anaphase along shortening microtubules that co-ordinately disassemble from their kinetochore ends. Journal of Cell Biology 104, 918.CrossRefGoogle Scholar
Hiraoka, Y.Agard, D. A. & Sedat, J. W. (1990). Temporal and spatial co-ordination of chromosome movement, spindle formation, and nuclear envelope breakdown during prometaphase in Drosophila melanogaster embryos. Journal of Cell Biology 111, 28152828.CrossRefGoogle Scholar
Jimenez, J.Alphey, L.Nurse, P. & Glover, D. M. (1990). Complementation of fission yeast cdcts and cdcts mutants identifies two cell cycle genes from Drosophila: a cdc homologue and string. EMBO Journal 9, 35653572.CrossRefGoogle Scholar
Kellogg, D. R.Field, CM. & Alberts, B. M. (1989). Identification of microtubule-associated proteins in the centrosome, spindle and kinetochore of the early Drosophila embryo. Journal of Cell Biology 109, 29772991.CrossRefGoogle ScholarPubMed
Kelley, M. R.Kidd, S.Berg, R. L. & Young, M. W. (1987). Restriction of P element insertions at the notch locus of Drosophila melanogaster. Molecular and Cellular Biology, 15451548.Google ScholarPubMed
Komma, D. J.Home, A. S. & Endow, S. A. (1991). Separation of meiotic and mitotic effects of claret nondisjunctional on chromosome segregation in Drosophila. EM BO Journal 10, 419424.Google ScholarPubMed
Lehner, C. F. & O'Farrell, P. H. (1989). Expression and function of cyclin A during embryonic cell cycle progression. Cell 56, 957968.CrossRefGoogle ScholarPubMed
Lehner, C. F. & O'Farrell, P. H. (1990 a). The role of Drosophila cyclins A and B in mitotic control. Cell 61, 535547.CrossRefGoogle Scholar
Lehner, C. F. & O'Farrell, P. H. (1990 b). Drosophila cdc homologs: a functional homolog is co-expressed with a cognate variant. EMBO Journal 9, 35733581.CrossRefGoogle Scholar
Lin, H. & Wolfner, M. F. (1991). The Drosophila maternal effect gene fs(1) Ya encodes a cell cycle-dependent nuclear envelope component required for embryonic mitosis. Cell 64, 4962.CrossRefGoogle ScholarPubMed
Lindsley, D. & Grell, E. (1968). Genetic variation in Drosophila melanogaster. Carnegie Institute of Washington Publication, 627.Google Scholar
Lindsley, D. & Zimm, H. (1987). The mutants of Drosophila melanogaster, III. Chromosome rearrangements. Drosophila Information Service 65.Google Scholar
McIntosh, J. R. & Koonce, M. P. (1989). Mitosis. Science 246, 622628.CrossRefGoogle ScholarPubMed
Mitchison, T. J. & Kirschner, M. W. (1985). Properties of the kinetochore in vitro. I. Microtubule nucleation and tubulin binding. Journal of Cell Biology 101, 755765.CrossRefGoogle ScholarPubMed
Mitchinson, T. J. & Sedat, J. W. (1983). Localisation of antigenic determinants in whole Drosophila embryos. Cellularity Biology 99, 261264.Google Scholar
Pliley, M. D.Farmer, J. L. & Jeffery, D. E. (1986). In situ hybridization of biotinylated DNA probes to polytene salivary chromosomes of Drosophila species. Drosophila Information Service 63, 147149.Google Scholar
Raff, J. W. & Glover, D. M. (1989). Centrosomes, not nuclei initiate pole cell formation in Drosophila embryos. Cell 57, 611619.CrossRefGoogle Scholar
Rieder, C. L.Alexander, S. P. & Rupp, G. (1990). Kinetochores are transposed poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells. Journal of Cell Biology 110, 8192.CrossRefGoogle Scholar
Robertson, H. M.Preston, C. R.Phillis, R. W.Johnson-Schiltz, D. M.Benz, W. K. & Engels, W. R. (1988). A stable genomic source of P element transposase in Drosophila melanogaster. Genetics 119, 461470.CrossRefGoogle Scholar
Shamarski, F. L. & Orr-Weaver, T. L. (1991). The Drosophila plutonium and pan gu genes regulate entry into 5 phase at fertilization. Cell 66, 12891300.CrossRefGoogle Scholar
Spillman, E. & Nothiger, R. (1978). Cytology, genetics and lethality patterns of homozygous lethal mutations in the sbd region. Drosophila Information Service 53, 164.Google Scholar
Struhl, G. (1982). Spineless-aristapedia, a homeotic gene that does not control the development of specific compartments in Drosophila. Genetics 102, 737749.CrossRefGoogle Scholar
Sunkel, C. & Glover, D. (1988). polo, a mitotic mutant of Drosophila displaying abnormal spindle poles. Journal of Cell Science 89, 2538.CrossRefGoogle Scholar
Vessey, K. B.Ludwiczak, R. L. & Underwood, E. M. (1991). Abnormal chromatin (abc), a maternal effect locus in Drosophila melanogaster. Journal of Cell Science 98, 233243.CrossRefGoogle ScholarPubMed
Warn, R. M. & Warn, A. (1986). Microtubule arrays present during the syncitial and cellular blastoderm stages of the early Drosophila embryo. Experimental Cell Research 163, 201210.CrossRefGoogle Scholar
Whitfield, W. G. F.Gonzalez, C.Maldonado-Codina, G.Glover, D. M. (1990). The A and B type cyclins of Drosophila are accumulated and destroyed in temporally distinct events that define separable phases of the G2/M transition. EMBO Journal 9, 25632572.CrossRefGoogle Scholar
Whiting, J. H. JrFarmer, J. L. & Jeffery, D. E. (1987). Improved in situ hybridization and detection of biotin labelled D. melanogaster DNA probes hydribized to D. virilis salivary gland chromosomes. Drosophila Information Service 66, 170171.Google Scholar
Yamamoto, A. H.Komma, D. J.Schaffer, C. D.Pirrotta, V. & Endow, S. A. (1989). The claret locus in Drosophila encodes products required for eyecolor and for meiotic chromosome segregation. EMBO Journal 8, 35433552.CrossRefGoogle ScholarPubMed
Yang, J. T.Laymon, R. A. & Goldstein, L. S. B. (1989). A three domain structure of kinesin heavy chain revealed by DNA sequence and microtubule binding analysis. Cell 56, 879889.CrossRefGoogle Scholar
Yasuda, G. K.Baker, J. & Schubiger, G. (1991). Indpendent role of centrosomes and DNA in organizing the Drosophila cytoskeleton. Development 111, 379391.CrossRefGoogle Scholar