Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-13T08:58:06.313Z Has data issue: false hasContentIssue false

The testis-determining gene, SRY, exists in multiple copies in Old World rodents

Published online by Cambridge University Press:  14 April 2009

Claude M. Nagamine
Affiliation:
Department of Cell Biology, Vanderbilt University School of Medicine, Medical Center North, Room T2216, Nashville, TN USA 37232-2175

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

SRY is a unique gene on the Y chromosome in most mammalian species including the laboratory mouse, Mus musculus, and the closely related European wild mouse species M. spicilegus, M. macedonicus, and M. spretus. In contrast, SRY is present in 2–6 copies in the more distantly related Asian mouse species M. caroli, M. cervicolor, and M. cookii and in 2–13 copies in the related murid species Pyromys saxicola, Coelomys pahari, Nannomys minutoides, Mastomys natalensis, and Rattus norvegicus. Copy numbers do not correlate with known phylogenetic relationships suggesting that SRY has undergone a rapid and complex evolution in these species. SRY was recently proposed as a molecular probe for phylogenetic inferences. The presence of multiple SRY genes in a wide range of murid species and genera, and at least one cricetid species, necessitates caution in the use of SRY for phylogenetic studies in the Rodentia unless it is ascertained that multiple SRY genes do not exist.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

References

Alexander-Bridges, M., Ercolani, L., Kong, X. F. & Nasrin, N. (1992). Identification of a core motif that is recognized by three members of the HMG class of transcriptional regulators: IRE-ABP, SRY, and TCF-lα. Journal of Cellular Biochemistry 48, 129135.CrossRefGoogle Scholar
Ashworth, A., Skene, B., Swift, S. & Lovell-Badge, R. (1990). Zfa is an expressed retroposon derived from an alternative transcript of the Zfx gene. The EMBO Journal 9, 15291534.CrossRefGoogle ScholarPubMed
Ashworth, A., Swift, S. & Affara, N. (1989). Sequence of cDNA for murine Zfy-1, a candidate for Tdy. Nucleic Acids Research 17, 2864.CrossRefGoogle ScholarPubMed
Auffray, J.-C., Marshall, J. T., Thaler, L. & Bonhomme, F. (1990). Focus on the nomenclature of European species of Mus. Mouse Genome 88, 78.Google Scholar
Berta, P., Hawkins, J. R., Sinclair, A. H., Taylor, A., Griffiths, B. L., Goodfellow, P. N. & Fellous, M. (1990). Genetic evidence equating SR Y and the testis-determining factor. Nature 348, 448450.CrossRefGoogle Scholar
Bianchi, N., Bianchi, M. S., Bailliet, G. & de la Chapelle, A. (1993). Characterization and sequencing of the sex determining region Y gene (Sry) in Akodon (Cricetidae) species with sex reversed females. Chromosoma 102, 389395.CrossRefGoogle ScholarPubMed
Bianchi, N. O., Bianchi, M. S., Pamilo, P., Vidal-Rioja, L. & de la Chapelle, A. (1992). Evolution of zinc finger-Y and zinc finger-X genes in oryzomyne-akodontine rodents (Cricetidae). Journal of Molecular Evolution 34, 5461.CrossRefGoogle ScholarPubMed
Bonhomme, F. (1986). Evolutionary relationships in the genus Mus. In The Wild Mouse in Immunology (eds Potter, M., Nadeau, J. H. and Cancro, M. P.), pp. 1934. New York: Springer-Verlag.CrossRefGoogle Scholar
Bonhomme, F. & Guénet, J.-L. (1989). The wild house mouse and its relatives. In Genetic Variants and Strains of the Laboratory Mouse (ed. Lyon, M. F. and Searle, A. G.), pp. 649662. Oxford: Oxford University Press.Google Scholar
Boyer, S., Montagutelli, X., Gomès, D., Simon-Chazottes, D., Guénet, J.-L. & Dupouey, P. (1991). Recent evolutionary origin of the expression of the glial fibrillary acidic protein (GFAP) in lens epithelial cells. A molecular and genetic analysis of various mouse species. Molecular Brain Research 10, 159166.CrossRefGoogle ScholarPubMed
Cattanach, B. M., Rasberry, C, Burtenshaw, M. D. & Evans, E. P. (1990). Illegitimate pairing of the X and Y chromosomes in Sxr mice. Genetical Research 56, 121128.CrossRefGoogle ScholarPubMed
Coward, P., Nagai, K., Chen, D., Thomas, H. D., Nagamine, C. M. & Lau, Y.-F. C. (1994). Polymorphism of a CAG trinuceotide repeat within Sry correlates with B6.YDorn sex reversal. Nature Genetics 6, 245250.CrossRefGoogle ScholarPubMed
Foster, J. W., Brennan, F. E., Hampikian, G. K.Goodfellow, P. N., Sinclair, A. H., Lovell-Badge, R., Selwood, L., Renfree, M. B., Cooper, D. W. & Graves, J. A. M. (1992). Evolution of sex determination and the Y chromosome: SRY-related sequences in marsupials. Nature 359, 531533.CrossRefGoogle Scholar
Goodfellow, P. N. & Lovell-Badge, R. (1993). SRY and sex determination in mammals. Annual Review of Genetics 27, 7192.CrossRefGoogle ScholarPubMed
Gorlin, R. J. (1977). Classical chromosome disorders. In New Chromosomal Syndromes (ed. Yunis, J. J.), pp. 60117. New York: Academic Press.Google Scholar
Graves, P. E. & Erickson, R. P. (1992). An amino acid change in the DNA-binding region of Sry, found in Mus musculus domesticus and other species, does not explain C57BL/6J-YDom sex reversal. Biochemical Biophysical Research Communications 185, 310316.CrossRefGoogle Scholar
Grosschedl, R., Giese, K. & Pagel, J. (1994) HMG domain proteins: architectural elements in the assembly of nucleoprotein structures. Trends in Genetics 10, 94100.CrossRefGoogle ScholarPubMed
Gubbay, J., Collignon, J., Koopman, P., Capel, B., Economou, A., Münsterberg, A., Vivian, N., Goodfellow, P. & Lovell-Badge, R. (1990). A gene mapping to the sex determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 346, 245250.CrossRefGoogle Scholar
Gubbay, J., Vivian, N., Economou, A., Jackson, D., Goodfellow, P. & Lovell-Badge, R. (1992). Inverted repeat structure of the Sry locus in mice. Proceedings of the National Academy of Sciences, U.S.A. 89, 79537957.CrossRefGoogle ScholarPubMed
Haqq, C. M., King, C.-Y., Donahoe, P. K. & Weiss, M. A. (1993). SRY recognizes conserved DNA sites in sex specific promoters. Proceedings of the National Academy of Sciences, U.S.A. 90, 10971101.CrossRefGoogle ScholarPubMed
Harley, V. R., Jackson, D. I., Hextall, P. J., Hawkins, J. R., Berkovitz, G. D., Sockanathan, S., Lovell-Badge, R. & Goodfellow, P. N. (1992) DNA binding activity of recombinant SRY from normal males and XY females. Science 255, 453456.CrossRefGoogle ScholarPubMed
Koopman, P., Gubbay, J., Vivian, N., Goodfellow, P. & Lovell-Badge, R. (1991). Male development of chromosomally female mice transgenic for Sry. Nature. 351, 117121.CrossRefGoogle ScholarPubMed
Landsman, D. & Bustin, M. (1993). A signature for the HMG-1 box DNA-binding proteins. BioEssays 15, 539546.CrossRefGoogle ScholarPubMed
Lau, Y.-F. C, Yang-Feng, T. L., Elder, B., Fredga, K. & Wiberg, U. H. (1992). Unusual distribution of Zfy and Zfx sequences on the sex chromosomes of the wood lemming, a species exhibiting XY sex reversal. Cytogenetics and Cell Genetics 60, 4854.CrossRefGoogle ScholarPubMed
Lundrigan, B. L. & Tucker, P. K. (1994). Tracing paternal ancestry in mice, using the Y-linked, sex-determining locus, Sry. Molecular Biology and Evolution 11, 483492.Google ScholarPubMed
Lyon, M. F., Cattanach, B. M. & Charlton, H. M. (1981). Genes affecting sex differentiation in mammals. In Mechanisms of Sex Differentiation in Animals and Man (eds Austin, C. R. and Edwards, R. G.), pp. 329386. New York: Academic Press.Google Scholar
Mardon, G. & Page, D. C. (1989). The sex-determining region of the mouse Y chromosome encodes a protein with a highly acidic domain and 13 zinc fingers. Cell 56, 765770.CrossRefGoogle ScholarPubMed
McLaren, A., Simpson, E., Epplen, J. T., Studer, R., Koopman, P., Evans, E. P. & Burgoyne, P. S. (1988). Location of the genes controlling H—Y antigen expression and testis determination on the mouse Y chromosome. Proceedings of the National Academy of Sciences, U.S.A. 85, 64426445.CrossRefGoogle ScholarPubMed
Morita, T., Kubota, H., Murata, K., Nozaki, M., Delarbre, C, Willison, K., Satta, Y., Sakaizumi, M., Takahata, N., Gachelin, G. & Matsushiro, A. (1992). Evolution of the mouse t haplotype: recent and worldwide introgression to Mus musculus. Proceedings of the National Academy of Sciences, U.S.A. 89, 68516855.CrossRefGoogle ScholarPubMed
Nagamine, C. M., Boursot, P., Lau, Y.-F. C. & Moriwaki, K. (in press). Evolution of the Y-chromosome in the wild mouse. In Genetics in Wild Mice—Its Application to Biomedical Research (ed. Moriwaki, K., Shiroishi, T. and Yonekawa, H.), JapanScientific Societies Press.Google Scholar
Nagamine, C. M., Chan, K., Hake, L. E. & Lau, Y.-F. C. (1990). The two candidate testis-determining Y genes (Zfy-1 and Zfy-2) are differentially expressed in fetal and adult mouse tissues. Genes and Development 4, 6374.CrossRefGoogle ScholarPubMed
Nagamine, C. M., Chan, K., Kozak, C. A. & Lau, Y.-F. C. (1989). Chromosome mapping and expression of a putative testis-determining gene in mouse. Science 243, 8083.CrossRefGoogle Scholar
Nagamine, C. M., Nishioka, Y., Moriwaki, K., Boursot, P., Bonhomme, F. & Lau, Y.-F. C. (1992). The musculustype Y chromosome of the laboratory mouse is of Asian origin. Mammalian Genome 3, 8491.CrossRefGoogle ScholarPubMed
Page, D. C, Mosher, R., Simpson, E. M., Fisher, E. M. C, Mardon, G., Pollack, J., McGillivray, B., de la Chapelle, A. & Brown, L. G. (1987). The sex-determining region of the human Y chromosome encodes a finger protein. Cell 51, 10911104.CrossRefGoogle ScholarPubMed
Roberts, C., Weith, A., Passage, E., Michot, J. L., Mattei, M. G. & Bishop, C. E. (1988). Molecular and cytogenetic evidence for the location of Tdy and Hya on the mouse Y chromosome short arm. Proceedings of the National Academy of Sciences, U.S.A. 85, 64466449.CrossRefGoogle ScholarPubMed
Schimke, R. T., Sherwood, S. W., Hill, A. B. & Johnston, R. N. (1986). Overreplication and recombination of DNA in higher eukaryotes: potential consequences and biological implications. Proceedings of the National Academy of Sciences, U.S.A. 83, 21572161.CrossRefGoogle ScholarPubMed
She, J. X., Bonhomme, F., Boursot, P., Thaler, L. & Catzeflis, F. (1990). Molecular phylogenies in the genus Mus: Comparative analysis of electrophoretic, scnDNA hybridization, and mtDNA RFLP data. Biological Journal of the Linnean Society 41, 83103.CrossRefGoogle Scholar
Simpson, E. M. & Page, D. C. (1991). An interstitial deletion in mouse Y chromosomal DNA created a transcribed Zfy fusion gene. Genomics 11, 601608.CrossRefGoogle ScholarPubMed
Sinclair, A. H., Berta, P., Palmer, M. S., Hawkins, J. R., Griffiths, B. L., Smith, M. J., Foster, J. W., Frischauf, A.-M., Lovell-Badge, R. & Goodfellow, P. N. (1990). A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346, 240244.CrossRefGoogle ScholarPubMed
Su, H. & Lau, Y.-F. C. (1993). Identification of the transcriptional unit, structural organization, and promoter sequence of the human Sex-Determining Region Y (SRY) gene, using a reverse genetic approach. American Journal of Human Genetics 52, 2438.Google ScholarPubMed
Tucker, P. K. & Lundrigan, B. L. (1993). Rapid evolution of the sex determining locus in Old World mice and rats. Nature 364, 715717.CrossRefGoogle ScholarPubMed
Whitfield, L. S., Lovell-Badge, R. & Goodfellow, P. N. (1993). Rapid sequence evolution of the mammalian sex determining gene SRY. Nature 364, 713715.CrossRefGoogle ScholarPubMed