Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-19T19:00:18.287Z Has data issue: false hasContentIssue false

Tests of hypotheses on recombination frequencies

Published online by Cambridge University Press:  14 April 2009

N. E. Morton
Affiliation:
Population Genetics Laboratory, University of Hawaii, Honolulu, HI 96822
C. J. MacLean
Affiliation:
Population Genetics Laboratory, University of Hawaii, Honolulu, HI 96822
R. Lew
Affiliation:
Population Genetics Laboratory, University of Hawaii, Honolulu, HI 96822

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Data from Neurospora, Drosophila, and the mouse support the mapping parameter conventionally used for man, exclude the Haldane, Kosambi, and Carter—Falconer functions, and suggest a refinement for centromere mapping. Different sexes, chromosome arms, and types of data are surprisingly consistent. Double recombination frequencies are accurately predicted, but triple recombination frequencies are overestimated. The centromere appears to act on interference as an obligatory chiasma. Recombination across the centromere conforms to a simple approximation, based on the interval Markov assumption with a common mapping parameter. These results imply that mapping of n loci requires estimation of at most n parameters, and the relation between map distances and all recombination frequencies is explicit.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

References

REFERENCES

Barratt, R. W., Newmeyer, D., Perkins, D. D. & Garnjobst, L. (1954). Map construction in Neurospora crossa. Advances in Genetics 6, 193.CrossRefGoogle Scholar
Beadle, G. W. & Emerson, S. (1935). Further studies of crossing over in attached-X chromosomes of Drosophila melanogaster. Genetics 20, 192206.CrossRefGoogle ScholarPubMed
Bole-Gowda, N., Perkins, D. D. & Strickland, W. N. (1962). Crossingover and interference in the centromere region of linkage group I of Neurospora. Genetics 47, 12431252.CrossRefGoogle Scholar
Bonnier, G. & Nordenskiold, M. (1937). Studies in Drosophila with attached-X's. I. Crossingover values, frequencies of reciprocal and nonreciprocal exchange, chromatid interference. Hereditas 23, 257278.CrossRefGoogle Scholar
Bridges, C. B. & Morgan, T. H. (1923). The third chromosome group of mutant characters of Drosophila melanogaster. Carnegie Institute of Washington Yearbook 327, 251.Google Scholar
Carter, T. C. & Falconer, D. S. (1951). Stocks for detecting linkage in the mouse and the theory of their design. Journal of Genetics 50, 307373.CrossRefGoogle ScholarPubMed
Emerson, S. (1963). Meiotic recombination in fungi with special reference to tetrad analysis. Methodology in Basic Genetics (ed. Burdette, W. J.), pp. 167208. San Francisco: Holden-Day.Google Scholar
Emerson, S. & Beadle, G. W. (1933). Crossing over near the spindle fiber in attached-X chromosomes of Drosophila melanogaster. Zeitschrift für induktive Abstammungs und Vererbungslehre 65, 129140.Google Scholar
Haldane, J. B. S. (1919). The combination of linkage values and the calculation of distances between the loci of linked factors. Journal of Genetice 8, 299309.Google Scholar
Keats, B. J. B., Morton, N. E., Rao, D. C. & Williams, W. R. (1979). A Source Book for Linkage in Man. Baltimore: Johns Hopkins University Press.Google Scholar
Kosambi, D. D. (1944). The estimation of map distances from recombination values. Annals of Eugenics (London) 12, 172175.CrossRefGoogle Scholar
Lane, P. W. (1963). Whirler mice, a recessive behavior mutation in linkage group VII. Journal of Heredity 54, 263266.CrossRefGoogle Scholar
Lindsley, D. L. & Grell, E. H. (1968). Genetic variations of Drosophila melanogaster. Carnegie Institute of Washington Yearbook 627, 471.Google Scholar
Morgan, T. H. & Bridges, C. B. (1916). Sex-linked inheritance in Drosophila. Carnegie Institute of Washington Yearbook 237, 87.Google Scholar
Morgan, T. H., Bridges, C. B. & Schultz, J. (1935). Constitution of the germinal material in relation to heredity. Carnegie Institute of Washington Yearbook 34, 284291.Google Scholar
Morton, N. E. & MacLean, C. J. (1984). Multilocus recombination frequencies. Genetical Research 44, 99108.CrossRefGoogle ScholarPubMed
Ott, J., Linder, D., McCaw, B. K., Lovrien, E. W. & Hecht, F. (1976). Estimating distances from the centromere by means of benign ovarian teratomas in man. Annals of Human Genetics, London 40, 191196.CrossRefGoogle ScholarPubMed
Owen, A. R. G. (1950). The theory of genetical recombination. Advances in Genetics 3, 117157.CrossRefGoogle ScholarPubMed
Perkins, D. D. (1962). Crossingover and interference in a multiply marked chromosome arm of Neurospora. Genetics 47, 12531274.CrossRefGoogle Scholar
Rao, D. C., Morton, N. E., Lindsten, J., Hulten, M. & Yee, S. (1977). A mapping function for man. Human Heredity 27, 99104.CrossRefGoogle ScholarPubMed
Risch, N. & Lange, K. (1983). Statistical analysis of multilocus recombination. Biometrics 39, 949963.CrossRefGoogle Scholar
Robinson, R. (1972). Gene Mapping in Laboratory Mammals, part B. London: Plenum Press.CrossRefGoogle Scholar
Sherman, S. L., King, J., Robson, E. B. & Yee, S. (1984). A revised map of chromosome 1. Annals of Human Genetics 48, 243251.CrossRefGoogle ScholarPubMed
Sturtevant, A. H. (1931). Two new attached-X lines of Drosophila melanogaster and further data on the behavior of heterozygous attached-X's. Carnegie Institute of Washington Yearbook 421, 6181.Google Scholar