Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-22T04:23:25.691Z Has data issue: false hasContentIssue false

Integrated chronostratigraphy of Proterozoic–Cambrian boundary beds in the western Anabar region, northern Siberia

Published online by Cambridge University Press:  01 May 2009

Alan J. Kaufman
Affiliation:
Botanical Museum, Harvard University, Cambridge MA 02138, USA
Andrew H. Knoll
Affiliation:
Botanical Museum, Harvard University, Cambridge MA 02138, USA
Mikhail A. Semikhatov
Affiliation:
Geological Institute, Russian Academy of Sciences, Moscow 109107, Russia
John P. Grotzinger
Affiliation:
Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge MA 02139, USA
Stein B. Jacobsen
Affiliation:
Department of Earth and Planetary Sciences, Harvard University, Cambridge MA 02138, USA
William Adams
Affiliation:
Department of Earth Sciences, Dartmouth College, Hanover NH 03755, USA

Abstract

Carbonate-rich sedimentary rocks of the western Anabar region, northern Siberia, preserve an exceptional record of evolutionary and biogeochemical events near the Proterozoic/Cambrian boundary. Sedimentologically, the boundary succession can be divided into three sequences representing successive episodes of late transgressive to early highstand deposition; four parasequences are recognized in the sequence corresponding lithostratigraphically to the Manykai Formation. Small shelly fossils are abundant and include many taxa that also occur in standard sections of southeastern Siberia. Despite this coincidence of faunal elements, biostratigraphic correlations between the two regions have been controversial because numerous species that first appear at or immediately above the basal Tommotian boundary in southeastern sections have first appearances scattered through more than thirty metres of section in the western Anabar. Carbon- and Sr-isotopic data on petrographically and geochemically screened samples collected at one- to two-metre intervals in a section along the Kotuikan River, favour correlation of the Staraya Reckha Formation and most of the overlying Manykai Formation with sub-Tommotian carbonates in southeastern Siberia. In contrast, isotopic data suggest that the uppermost Manykai Formation and the basal 26 m of the unconformably overlying Medvezhya Formation may have no equivalent in the southeast; they appear to provide a sedimentary and palaeontological record of an evolutionarily significant time interval represented in southeastern Siberia only by the sub-Tommotian unconformity. Correlations with radiometrically dated horizons in the Olenek and Kharaulakh regions of northern Siberia suggest that this interval lasted approximately three to six million years, during which essentially all 'basal Tommotian' small shelly fossils evolved.

Type
Articles
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aharon, P., Schidlowski, M., & Singh, I. B. 1987. Chronostratigraphic markers in the end-Precambrian isotope record of the Lesser Himalaya. Nature 327, 699702.CrossRefGoogle Scholar
Bertrand-Sarfati, J., Moussine-Pouchkine, A., Amard, B., & Ait, Kaci Ahmed A. 1995. First Ediacaran fauna found in western Africa and evidence for an early Cambrian glaciation. Geology 23, 133–6.2.3.CO;2>CrossRefGoogle Scholar
Bowring, S. A., Grotzinger, J. P., Isachsen, C. E., Knoll, A. H., Pelechaty, S. M., & Kolosov, P. 1993. Calibrating rates of Early Cambrian evolution. Science 261, 1293–8.CrossRefGoogle ScholarPubMed
Brasier, M. D., Khomentovsky, V. V., & Corfield, R. M. 1993. Stable isotopic calibration of the earliest skeletal fossil assemblages in eastern Siberia (Precambrian-Cambrian boundary). Terra Nova 5, 225–32.CrossRefGoogle Scholar
Brasier, M. D., Magaritz, M., Corfield, R., Luo, Huilin, Wu, Xiche, Jiang, Zhiwen, Hamdi, B., He, Tinggui, & Fraser, A. G. 1990. The carbon- and oxygen-isotope record of the Precambrian–Cambrian boundary interval in China and Iran and their correlation. Geological Magazine 127, 319–32.CrossRefGoogle Scholar
Brasier, M., Cowie, J., & Taylor, M. 1994. Decision on the Precambrian–Cambrian boundary stratotype. Episodes 17, 38.CrossRefGoogle Scholar
Brasier, M. D., Corfield, R. M., Derry, L. A., Rozanov, A. Yu., & Zhuravlev, A. Yu. 1994a. Multiple δ13C excursions spanning the Cambrian explosion to the Botomian crisis in Siberia. Geology 22, 455–8.2.3.CO;2>CrossRefGoogle Scholar
Brasier, M. D., Rozanov, A. Yu., Zhuravlev, A. Yu., Corfield, R. M., & Derry, L. A. 1994b. A carbon isotope reference scale for the Lower Cambrian Series in Siberia and its significance. Geological Magazine 131, 767–83.CrossRefGoogle Scholar
Brett, C. R., & Baird, G. C. 1990. A temporal hierarchy of paleoecologic processes within a Middle Devonian epeiric sea. Paleontological Society Special Publication 5, 18209.CrossRefGoogle Scholar
Chumakov, N. M. 1985. Glacial events of the past and their geological significance. Palaeogeography, Palaeoclimatology Palaeoecology 51, 319–46.CrossRefGoogle Scholar
Crimes, T. P. 1987. Trace fossils and the Precambrian–Cambrian boundary. Geological Magazine 124, 97117.CrossRefGoogle Scholar
De Raaf, J. F. M., Boersma, J. R., & Van Gelder, A. 1977. Wave generated structures and sequences from a shallow marine succession, Lower Carboniferous, County Cork, Ireland. Sedimentology 24, 451–83.CrossRefGoogle Scholar
Demicco, R. V. 1983. Wavy and lenticular-bedded carbonate ribbon rocks of the Upper Cambrian Conococheague Limestone, central Appalachians. Journal of Sedimentary Petrology 53, 1121–32.Google Scholar
Derry, L. A., Keto, L. S., Jacobsen, S. B., Knoll, A. H., & Swett, K. 1989. Sr isotopic variations in Upper Proterozoic carbonates from Svalbard and East Greenland. Geochimica et Cosmochimica Acta 53, 2331–9.CrossRefGoogle ScholarPubMed
Derry, L. A., Kaufman, A. J., & Jacobsen, S. B. 1992. Sedimentary cycling and environmental change in the Late Proterozoic: Evidence from stable and radiogenic isotopes. Geochimica et Cosmochimica Acta 56, 1317–29.CrossRefGoogle Scholar
Derry, L. A., Brasier, M. D., Corfield, R. M., Rozanov, A. Yu., & Zhuravlev, A. Yu. 1994. Sr isotopes in Lower Cambrian carbonates from the Siberian Craton: A paleoenvironmental record during the “Cambrian explosion”. Earth and Planetary Science Letters 128, 671–81.CrossRefGoogle Scholar
Enos, P., & Perkins, R. D. 1979. Evolution of Florida Bay from island stratigraphy. Bulletin, Geological Society of America 90, 5983.2.0.CO;2>CrossRefGoogle Scholar
Erwin, D. H. 1993. The Great Paleozoic Crisis. New York: Columbia University Press, 327 pp.Google Scholar
Fedonkin, M. A. 1990. Paleoichnology of Vendian metazoa. In The Vendian System, Vol. J: Paleontology (eds Sokolov, B. S., and Iwanowski, A. B.), pp. 132–7. Heidelberg: Springer-Verlag.Google Scholar
Fedorov, A. B., & Shishkin, B. B. 1984. Nizhnyaya granitsa kemrbriya na severe sibirskoy platformy [Lower Cambrian boundary in the northern part of the Siberian Platform]. In Problemy yarusnogo raschleneniya sistem fanerozoya Sibiri [Problems of the stage subdivision of the Siberian Phanerozoic], pp. 514. Novosibirsk: Nauka.Google Scholar
Freeman, T. 1962. Quiet water oolites from Laguna Madre, Texas. Journal of Sedimentary Petrology 32, 475–83.Google Scholar
Golovanov, N. P. 1970. Stromatolity verchnedokembriiskich otlozhenii zapadnogo sklona Anabarskogo podnyatiya [Stromatolites of the Upper Precambrian deposits of the western slope of the Anabar Uplift]. In Opornii razrez verchnedokembriiskich otlozhenii zapadnogo sklona Anabarskogo podnyatniya [The Key Upper Precambrian Section in the Western Slope of the Anabar Uplift] (ed. Tkachenko, B. V.), pp. 6079. Leningrad: NIIGA.Google Scholar
Gorokhov, I. M., Clauer, N., Turchenko, T. L., Melnikov, N. N., Kutyavin, E. P., Pirrus, E., & Baskakov, A. V. 1994. Rb—Sr systematics of Vendian—Cambrian claystones from the east European Platform: implications for a multi-stage illite evolution. Chemical Geology 112, 7189.CrossRefGoogle Scholar
Grant, S. W. F. 1992. Carbon isotopic vital effects and organic diagenesis, Lower Cambrian Forteau Formation, northwest Newfoundland: Implications for δ13C chemostratigraphy. Geology 20, 243–6.2.3.CO;2>CrossRefGoogle Scholar
Grossman, E. L. 1994. The carbon and oxygen isotope record during the evolution of Pangea: Carboniferous to Triassic. Geological Society of America Special Paper 288, 207–28.CrossRefGoogle Scholar
Grotzinger, J. P. 1986. Cyclicity and paleoenvironmental dynamics, Rocknest Platform, northwest Canada. Bulletin, Geological Society of America 97, 1208–31.2.0.CO;2>CrossRefGoogle Scholar
Grotzinger, J. P., Bowring, S. A., Saylor, B. Z., & Kaufman, A. J. 1995. Biostratigraphic and geochronologic constraints on early animal evolution. Science 270, 598604.CrossRefGoogle Scholar
Hambrey, M. J., & Harland, W. B. 1985. The late Proterozoic glacial era. Palaeogeography, Palaeoclimatology, Palaeoecology 51, 255–72.CrossRefGoogle Scholar
Hayes, J. M. 1993. Factors controlling δ13C contents of sedimentary organic compounds: principles and evidence. Marine Geology 113, 111–25.CrossRefGoogle Scholar
Hine, A. C, Wilber, R. J., & Neumann, A. C. 1981. Carbonate sand-bodies along contrasting shallow-bank margins facing open seaways, northern Bahamas. Bulletin, American Association of Petroleum Geologists 65, 261–90.Google Scholar
Hoffman, P. F. 1974. Shallow and deep-water stromatolites in lower Proterozoic platform-to-basin facies change, Great Slave Lake, Canada. Bulletin, American Association of Petroleum Geologists 58, 856–67.Google Scholar
Isachsen, C. E., Bowring, S. A., Landing, E., & Samson, S. D. 1994. New constraint on the division of Cambrian time. Geology 22, 496–8.2.3.CO;2>CrossRefGoogle Scholar
Karlova, G. A. 1987. First findings of a skeletal fauna in the Turkut Formation of the Olenek Uplift. Doklady, Academy of Sciences, USSR 292, 201–5.Google Scholar
Kaufman, A. J., Knoll, A. H., & Awramik, S. M. 1992. Biostratigraphic and chemostratigraphic correlation of Neoproterozoic sedimentary successions: Upper Tindir Group, northwestern Canada, as a test case. Geology 20, 181–5.2.3.CO;2>CrossRefGoogle ScholarPubMed
Kaufman, A. J., Jacobsen, S. B., & Knoll, A. H. 1993. The Vendian record of Sr and C isotopic variations in seawater: Implications for tectonics and paleoclimate. Earth and Planetary Science Letters 120, 409–30.CrossRefGoogle Scholar
Kaufman, A. J., & Knoll, A. H. 1995. Neoproterozoic variations in the carbon isotopic composition of seawater: Stratigraphic and biogeochemical implications. Precambrian Research 73, 2749.CrossRefGoogle ScholarPubMed
Khomentovsky, V. V. 1976. Vend [Vendian]. Novosibirsk: Nauka, 271 pp.Google Scholar
Khomentovsky, V. V. 1986. The Vendian System of Siberia and a standard stratigraphic scale. Geological Magazine 123, 333–8.CrossRefGoogle Scholar
Khomentovsky, V. V. 1990. Vendian of the Siberian Platform. In The Vendian System. Volume 2: Regional Geology (eds Sokolov, B. S., and Fedonkin, M. A.), pp. 102–83. Berlin: Springer-Verlag.Google Scholar
Khomentovsky, V. V., & Karlova, G. A. 1992. The Precambrian–Cambrian boundary and principles of its justification in Siberia. Russian Geology and Geophysics (Translation of Geologiya i Geofizika) 33, 118.Google Scholar
Khomentovsky, V. V., & Karlova, G. A. 1993. Biostratigraphy of the Vendian—Cambrian beds and the lower Cambrian boundary in Siberia. Geological Magazine 130, 2945.CrossRefGoogle Scholar
Khomentovsky, V. V., & Karlova, G. A. 1994. Ecological peculiarities of the Vendian–Cambrian small shelly fauna in the Siberian Platform. Stratigraphy and Geological Correlation 2, 206–15.Google Scholar
Khomentovsky, V. V., & Trofimov, V. R. 1980. Vend zapadnogo Prianabariya [Vendian of the Western Anabar area]. In Novye dannye po stratigrafii pozdnego dokembriya zapada Sibirskoi platformy i ee skladchatogo obramleniya [New Data on the Stratigraphy of the Late Precambrian of the Western Siberian Platform and its Folded Mountain Fringe] (ed. Khomentovsky, V. V.), pp. 330. Novosibirsk: Akademiya Nauk SSSR, Sibirskoye Otdeleniye, Trudy Instituta Geologii i Geofiziki.Google Scholar
Khomentovsky, V. V., Valkov, A. A., & Karlova, G. A. 1990. Novye dannye po biostratigrafii perechodnych Vend-Kembryiiskikh sloev v basseyne srednego techeniyar. Aldan [New data on biostratigraphy of transitional Vendian—Cambrian beds in the basin of the Aldan River middle stream]. In Pohzdniy dokembriy i nizgniy Paleozoi Sibiri: Voprosy regional’noi stratigrafii [Late Precambrian and Early Paleozoic in Siberia: Problems of Regional Stratigraphy] (ed. Khomentovsky, V. V.), pp. 157. Novosibirsk: Akademiya Nauk SSSR, Sibirskoye Otdeleniye, Trudy Instituta Geologii i Geofiziki.Google Scholar
Kirschvink, J. L, Magaritz, M., Rlpperdan, R. L., Zhuravlev, A. Yu., & Rozanov, A. Yu. 1991. The Precambrian/Cambrian boundary: Magnetostratigraphy and carbon isotopes resolve correlation problems between Siberia, Morocco, and South China. GSA Today 1, 6991.Google Scholar
Knoll, A. H., Hayes, J. M., Kaufman, A. J., Swett, K., & Lambert, I. B. 1986. Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland. Nature 321, 832–8.CrossRefGoogle ScholarPubMed
Knoll, A. H., Kaufman, A. J., & Semikhatov, M. A. 1995. The carbon-isotopic composition of Proterozoic carbonates: Riphean successions from northwestern Siberia (Anabar Massif, Turukhansk Uplift). American Journal of Science 295, 823–50.CrossRefGoogle ScholarPubMed
Knoll, A. H., Grotzinger, J. P., Kaufman, A. J., & Kolosov, P. N. 1995a. Integrated approaches to terminal Proterozoic stratigraphy: An example from the Olenek Uplift, northeastern Siberia. Precambrian Research 73, 251–70.CrossRefGoogle ScholarPubMed
Knoll, A. H., Kaufman, A. J., Semikhatov, M. A., Grotzinger, J. P., & Adams, W. 1995b. Sizing up the sub-Tommotian unconformity in Siberia. Geology 23, 1139–43.2.3.CO;2>CrossRefGoogle ScholarPubMed
Komar, V. A. 1966. Stmmatolity verchnedokembriiskich otlozheniy severa Sibirskoi platformy i ih stratigraficheskoe znachenie [Upper Precambrian Stromatolites in the Northern Part of the Siberian Platform and their Stratigraphic Significance]. Moscow: Trudy Geologicheskogo Instituta, Akademii Nauk SSSR, no. 154, 122 pp.Google Scholar
Kump, L. R. 1991. Interpreting carbon-isotope excursions: Strangelove oceans. Geology 19, 299302.2.3.CO;2>CrossRefGoogle Scholar
Landing, E. 1992. Lower Cambrian of southeastern Newfoundland: Epeirogeny and Lazarus faunas, lithofacies-biofacies linkages, and the myth of a global chronostratigraphy. In Origin and Early Evolution of the Metazoa (eds Lipps, J. H., and Signor, P. W.), pp. 283310. New York: Plenum Press.CrossRefGoogle Scholar
Landing, E. 1994. Precambrian–Cambrian boundary global stratotype ratified and a new perspective of Cambrian time. Geology 22, 179–82.2.3.CO;2>CrossRefGoogle Scholar
Lipps, J. H., & Signor, P. W. 1992. Origin and Early Evolution of the Metazoa. New York: Plenum, 570 pp.CrossRefGoogle Scholar
Long, D. G. F. 1993. Oxygen and carbon isotopes and event stratigraphy near the Ordovician–Silurian boundary, Anticosti Island Quebec. Palaeogeography, Palaeoclimatology, Palaeoecology 104, 4959.CrossRefGoogle Scholar
Luchinina, V. A. 1989. Calcareous algae in Vendian and Lower Paleozoic stromatolites of the Siberian Platform. Himalayan Geology 13, 257–67.Google Scholar
Magaritz, M., Holser, W. T., & Kirschvink, J. L. 1986. Carbon—isotope events across the Precambrian/Cambrian boundary on the Siberian Platform. Nature 320, 258–9.CrossRefGoogle Scholar
Magaritz, M., Kirschvink, J. L., Latham, A. J., Zhuravlev, A. Yu., & Rozanov, A. Yu. 1991. Precambrian/Cambrian boundary problem: Carbon isotope correlations for Vendian and Tommotian time between Siberia and Morocco. Geology 19, 847–50.2.3.CO;2>CrossRefGoogle Scholar
Markello, J. R., & Read, J. F. 1981. Carbonate ramp-to-deeper shale shelf transitions of an Upper Cambrian intrashelf basin, Nolichucky Formation, southwest Virginia Appalachians. Sedimentology 28, 573–97.CrossRefGoogle Scholar
Marshall, J. D., & Middleton, P. D. 1990. Changes in marine isotopic composition and the late Ordovician glaciation. Journal of the Geological Society, London 147, 14.CrossRefGoogle Scholar
Missarzhevsky, V. V. 1989. Drevneishiye skeletniye okamenelosti i stratigrafiya pogranichnych tolshch dokembriya i kembriya [Oldest Skeletal Fossils and the Stratigraphy of Precambrian/Cambrian Boundary Beds]. Moscow: Trudy Geologischeskogo Instituta, Akademii Nauk SSSR, no. 443, 237 pp.Google Scholar
Moczydlowska, M. 1991. Acritarch biostratigraphy of the Lower Cambrian and the Precambrian/Cambrian boundary in southeastern Poland. Fossils and Strata 29, 1127.CrossRefGoogle Scholar
Moczydlowska, M., & Vidal, G. 1988. How old is the Tommotian? Geology 16, 166–8.2.3.CO;2>CrossRefGoogle Scholar
Montanez, I. P. 1992. Controls of eustacy and associated diagenesis on reservoir hetereogeneity in Lower Ordovician, upper Knox carbonates, Appalachians. In Paleokarst, Karst-Related Diagenesis and Reservoir Development: Examples from Ordovician–Devonian Age Strata of West Texas and the Mid-Continent (eds Candelaria, M. P., and Reed, C. L.), pp. 165–81. SEPM Permian Basin Section, Publication 92–93.Google Scholar
Montanez, I. P., & Osleger, D. A. 1993. Parasequence stacking patterns, third-order accommodation events, and sequence stratigraphy of Middle to Upper Cambrian platform carbonates, Bonanza King Formation, southern Great Basin. In Carbonate Sequence Stratigraphy: Recent Developments and Applications (eds Loucks, R. G., and Sarg, F. R.), pp. 305–26. American Association of Petroleum Geologists Memoir no. 57.Google Scholar
Morris, P. J., Ivany, L. C, Schopf, K. M., & Brett, C. E. 1995. The challenge of paleoecological stasis: reassessing sources of evolutionary stability. Proceedings, National Academy of Sciences, U.S.A. 92, 11269–73.CrossRefGoogle ScholarPubMed
Narbonne, G. M., & Myrow, P. 1988. Trace fossil biostratigraphy in the Precambrian–Cambrian boundary interval. New York State Museum Bulletin 463, 72–6.Google Scholar
Narbonne, G. M., Myrow, P. M., Landing, E., & Anderson, M. M. 1987. A candidate stratotype for the Precambrian-Cambrian boundary, Fortune Head, Burin Peninsula, southeastern Newfoundland. Canadian Journal of Earth Sciences 24, 1277–93.CrossRefGoogle Scholar
Narbonne, G. M., Kaufman, A. J., & Knoll, A. H. 1994. Integrated chemostratigraphy and biostratigraphy of the upper Windermere Supergroup (Neoproterozoic), Mackenzie Mountains, northwestern Canada. Bulletin, Geological Society of America 106, 1281–92.2.3.CO;2>CrossRefGoogle ScholarPubMed
Pelechaty, S. M., Kaufman, A. J., & Grotzinger, J. P. 1996. Evaluation of δ13C isotope stratigraphy for intrabasinal correlation: Vendian strata of the Olenek uplift and Kharaulakh Mountains, Siberian platform, Russia. Geological Society of America 108, in press.2.3.CO;2>CrossRefGoogle Scholar
Pokrovsky, B. G., & Missarzhevsky, V. V. 1993. Izotopnaya korrelyatsiya pogranichnikh tolshch dokembrriya i kembriya sibirskoy platformy [Isotopic correlation of Precambrian and Cambrian boundary beds of the Siberian Platform]. DokladyAkademiiNaukRossiya 329, 768–71.Google Scholar
Pokrovsky, B. G., & Vinogradov, V. I. 1991. Izotopnich sostav stronstiya i ugleroda v verchnedokembriyskich karbonatakh zapadnogo sklona anabarskogo podnyatiya (r. Kotuikan) [Isotopic composition of strontium, oxygen, and carbon in the Upper Precambrian carbonates of the western slope of the Anabar Uplift (Kotuikan River)]. Doklady Akademii Nauk SSSR 320, 1245–50.Google Scholar
Pratt, L. M., Force, E. R., & Pomerol, B. 1991. Coupled manganese and carbon-isotopic events in marine carbonates at the Cenomanian–Turonian boundary. Journal of Sedimentary Petrology 61, 370–83.Google Scholar
Qian, Yi, & Bengtson, S. 1989. Palaeontology and biostratigraphy of the Early Cambrian Meishucunian Stage in Yunnan Province, South China. Fossils and Strata 24, 1156.Google Scholar
Read, J. F., Grotzinger, J. P., Bova, J. A., & Koerschner, W. F. 1986. Models for generation of carbonate cycles. Geology 14, 107–10.2.0.CO;2>CrossRefGoogle Scholar
Repina, L. N., & Rozanov, A. Yu. 1992. Kembriy Sibiri [The Cambrian of Siberia]. Novosibirsk: Trudy Instituta Geologii i Geofiziki SO AN SSSR, no. 788, 135 pp.Google Scholar
Repina, L. N., Lazarenko, N. P., Meshkova, N. P., Korshunov, V. T., Nikiforov, N. T., & Aksarina, N. A. 1974. Biostratigrafiya i fauna nizhnego kembriya Kharaulakha (Khrebet Tuora-Sis) [Biostratigraphy and fauna of the Lower Cambrian of the Kharaulakh (Tuora-Sis Ridge)]. Moscow: Nauka.Google Scholar
Rozanov, A. Yu. (Ed.) 1982. Granitsa dokembriya i kembriya v geosinklinalnykh oblastyakh (Opornyi razrez Salany-Gol, MNR). [Precambrian–Cambrian boundary in geosynclinal areas (the reference section of Salany-Gol, MPR)]. Moscow: Nauka, 150 pp.Google Scholar
Rozanov, A. Yu. 1984. The Precambrian/Cambrian boundary in Siberia. Episodes 7, 20–4.Google Scholar
Rozanov, A. Yu., & Sokolov, B. S. 1984. Yarusnoe raschlenenie nizhnego kemryiya: Stratigrafiya [Lower Cambrian Stage Subdivision: Stratigraphy]. Moscow: Nauka, 184 pp.Google Scholar
Rozanov, A. Yu., Volkova, N. A., Voronova, L. C., Krylov, I. N., Keller, B. M., Korolyuk, I. K., Lendzion, K., Michniak, R., Pykhova, N. G., & Sidorov, A. D. 1969. The Tommotian Stage and the Cambrian Lower Boundary Problem.New Delhi: Amerind Publishing Company (1981 translation), 359 pp.Google Scholar
Sadler, P. M. 1981. Sediment accumulation rates and the completeness of stratigraphic sections. Journal of Geology 89, 569–84.CrossRefGoogle Scholar
Sarg, J. F. 1988. Carbonate sequence stratigraphy. In Sea-Level Changes: An Integrated Approach (eds Wilgus, C. K., Hastings, B. S., Kendall, C. G. S. C., Posamentier, H. W., Ross, C. A., and Van Waggoner, J. C.), pp. 155–82. SEPM Special Publication no. 42.CrossRefGoogle Scholar
Savitsky, V. E. 1962. Sootnosheniy kembriya i verchnego dokembriya Anabarskogo shchita [On the relationships between the Cambrian and Upper Precambrian on the Anabar shield]. In Sovetschanie po stratigrafii otlozheniy pozdnego dokembriya Sibiri i Dal’nego Vostoka [Meeting on the Stratigraphy of Late Precambrian Deposits on Siberia and the Far East] (ed. Sokolov, B. S.), pp. 53–4. Novosibirsk: Nauka.Google Scholar
Savitsky, V. E. 1975. Problema nizhney granitsy kembriya na Sibirskoy platforme i nemakit-daldynskiy gorizont [Problem of the lower Cambrian boundary in the Siberian Platform and Nemakit-Daldynian Horizon]. In AnalogiVendskogo kompleksa v Sibiri (Analogues of the Vendian Complex in Siberia), pp. 4361. Moscow: Nauka.Google Scholar
Scholle, P. A. 1995. Carbon and sulfur isotope stratigraphy of the Permian and adjacent intervals. In The Permian of Northern Pangea, Volume 1: Paleogeography, Paleoclimates, Stratigraphy (eds Peryt, T. M. and Ulmer-Scholle, D. S.), pp. 133–49. New York: Springer-Verlag.CrossRefGoogle Scholar
Semikhatov, M. A., Komar, V. A., & Serebryakov, S. N. 1970. Yudomskiy kompleks stratotipicheskoy mestnosti [The Yudomian Complex of the Stratotype Area]. Moscow: Trudy Geologischeskogo Instituta, Akademii Nauk SSSR, no. 210,207 pp.Google Scholar
Semikhatov, M. A., & Serebryakov, S. N. 1983. Sibirsky gipostratotip rifeya [The Siberian Hypostratotype of the Riphean].lMoscow: Trudy Geologicheskogo Instituta, Akademii Nauk SSSR, no. 367, 224 pp.Google Scholar
Shaw, A. B. 1964. Time in Stratigraphy. New York: McGraw-Hill, 365 pp.Google Scholar
Shishkin, B. B. 1978. K voprosu o stratigraficheskom raschlenenii verknedokembriiskikh obrazovaniy na territorii zapadnogo Prianabarya (On the stratigraphic subdivision of the Upper Precambrian deposits on the Western Anabar territory). In Stratigraphiya dokembriya i nizhnego kembriya vostoka Sibirskoi platformy [Precambrian and Cambrian stratigraphy of the Eastern Siberian Platform], pp. 6675. Yakutsk: Nauka.Google Scholar
Shpunt, B. R., Shapovalova, Y. G., & Shamshina, E. A. 1982. Pozdniy dokembriy severa Sibirskoi platformy [Late Precambrian on the Northern Siberian Platform]. Novosibirsk: Nauka, 225 pp.Google Scholar
Sloss, L. L. 1963. Sequences in the cratonic interior of North America. Bulletin, Geological Society of America 74, 93114.CrossRefGoogle Scholar
Smith, L. H., Kaufman, A. J., Knoll, A. H., & Link, P. K. 1994. Chemostratigraphy of predominantly siliciclastic Neoproterozoic successions: a case study of the Pocatello Formation and Lower Brigham Group, Idaho, USA. Geological Magazine 131, 301–14.CrossRefGoogle ScholarPubMed
Tucker, M. E. 1986. Carbon isotope excursions in Precambrian/Cambrian boundary beds, Morocco. Nature 319, 4850.CrossRefGoogle Scholar
Veizer, J. 1983. Chemical diagenesis of carbonates: Theory and application of trace element technique. In Stable Isotopes in Sedimentary Geology (eds Arthur, M. A., Anderson, T. F., Kaplan, I. R., Veizer, J., and Land, L. S.), S.E.P.M. Short Course 10, 3–1–3–100.Google Scholar
Vidal, G., Moczydlowska, M., & Rudavskaya, V. R. 1995. Constraints on the early Cambrian radiation and correlation of the Tommotian and Nemakit-Daldynian regional stages of eastern Siberia. Journal of the Geological Society, London 152, 499510.CrossRefGoogle Scholar
Volkova, N. A. 1968. Akritarkhi dokembrijskikh i nizhnekembrijskikh otlozhenij Estonii [Acritarchs from the Precambrian and Cambrian of Estonia]. In Problematiki pogranichnykh sloev rifeya i kembriya Russkoj platformy, Urala i Khzakhstana [Problematics of Riphean and Cambrian layers of the Russian Platform, Urals and Kazakhstan] (eds Volkova, N. A., Zhuraleva, Z. A., Zabrodin, V. E., and Klinger, B. Sh.), pp. 836. Moscow: Nauka.Google Scholar
Volkova, N. A., Kir’yanov, V. V, Piscun, L. V, Pashkyavichene, L. T., & Jankauskas, T. V. 1979. Rastitel’nye mikrofossilii [Microflora]. In Paleontologiya verkhnedokembriiskikh i kembriiskikh otlozhenii Vostochno-Europejskoi plarformy [Upper Precambrian and Cambrian paleontology of the East European Platform] (eds Keller, B. M., and Rozanov, A. Yu.), pp. 438. Moscow: Nauka.Google Scholar
Volkova, N. A., Kjr’yanov, V. V, Pyatiletov, V. G., Rudavskaya, V. A., Treshchetenkova, A. A., FaiZuliNa, E. K., & Jankauskas, T. V. 1980. Mikrofossilii verkhnego dokembriya sibirskoy platformy [Upper Precambrian microfossils of the Siberian Platform]. Izvestiya Akademikii Nauk SSSR, Seriya Geologicheskaya 1, 23–9.Google Scholar
Volkova, N. A., Kjr’yanov, V. V, Piscun, L. V., Pashkyavichene, L. T., & Jankauskas, T. V. 1983. Plant microfossils. In Upper Precambrian and Cambrian Palaeontoloty of the East-European Platform (eds Urbanek, A., and Rozanov, A. Yu.), pp. 746. Warszawa: Wydawnictwa Geologiczne.Google Scholar
Wang, Kun, Orth, C. J., Attrep, M., Chatterton, B. D. E., Wang, Xiaofeng & Li, Ji-Jin., 1993. The great latest Ordovician extinction on the South China Plate: Chemostratigraphic studies of the Ordovician-Silurian boundary interval on the Yangtze Platform. Palaeogeography, Palaeoclimatology, Palaeoecology 104, 6179.CrossRefGoogle Scholar
Zhuravleva, Z. A., & Komar, V. A. 1962. K stratigraphii rifeya (siniya) Anabarskogo massiva [On the Riphean (Sinian) stratigraphy of the Anabar Massif]. Doklady Akademii Nauk SSSR 144, 197200.Google Scholar