Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-13T08:25:08.091Z Has data issue: false hasContentIssue false

Kinematics of rock flow and fabric development associated with shear deformation within the Zagros transpression zone, Iran

Published online by Cambridge University Press:  14 April 2011

ALI FAGHIH*
Affiliation:
Department of Earth Sciences, College of Sciences, Shiraz University, Shiraz, Iran
KHALIL SARKARINEJAD
Affiliation:
Department of Earth Sciences, College of Sciences, Shiraz University, Shiraz, Iran
*
*Author for correspondence: afaghih@shirazu.ac.ir

Abstract

This paper presents quantitative data on the finite strain, quartz crystal fabric, geometry of flow and deformation temperatures in deformed quartzite samples to characterize the ductile deformation along the thrust sheets constituting the Sanandaj–Sirjan Metamorphic Belt within the Zagros Mountains of Iran. The results of this study emphasize the heterogeneous nature of deformation in this belt, showing a spatial variation in strain magnitude and in degree of non-coaxiality. A dominant top-to-the-SE sense of shear is indicated by the asymmetry of microstructures and quartz c-axis fabrics. Quartz c-axis opening angles suggest deformation temperatures range between 435° ± 50°C and 510° ± 50°C, which yield greenschist to amphibolite facies conditions during the ductile deformation. Mean kinematic vorticity number (Wm) measured in the quartzite samples ranges between 0.6 and 0.9 with an average of 0.76, which indicates that extrusion of the metamorphic rocks of the region was facilitated by a significant component of pure shear strain. Traced towards the basal thrust of the Zagros Thrust System from northeast to southwest, the quartz grain fabrics change from asymmetric cross-girdle fabrics in the internal part of the deformation zone to an asymmetric single-girdle fabric at distances close to the basal thrust. This variation may depend on the structural depth and on the geometry of the ductile deformation zone. The observed increase in strain and vorticity within the study area is comparable with patterns recorded within metamorphic rock extrusions within other orogens in the world.

Type
PETROLOGY AND TECTONICS OF THE ZAGROS HINTERLAND
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alavi, M. 1994. Tectonics of the Zagros Orogenic belt of Iran: new data and interpretations. Tectonophysics 229, 211–38.CrossRefGoogle Scholar
Alavi, M. 2004. Regional stratigraphy of the Zagros fold-thrust belt of Iran, and its proforeland evolution. American Journal of Science 304, 120.CrossRefGoogle Scholar
Allen, M. B., Jackson, J. & Walker, R. 2004. Late Cenozoic reorganization of the Arabia-Eurasia collision and comparison of the short-term and long-term deformation rates. Tectonics 23, TC2008, doi: 10.1029/2003TC001530, 16 pp.Google Scholar
Authemayou, C., Bellier, O., Chardon, D., Malekzade, Z. & Abassi, M. 2005. Role of the Kazerun fault system in active deformation of the Zagros fold-and-thrust belt, Iran. Comptes Rendus Geoscience 337, 539–45.CrossRefGoogle Scholar
Bell, T. H. & Johnson, S. E. 1992. Shear sense: a new approach that resolves conflicts between criteria in metamorphic rocks. Journal of Metamorphic Geology 10, 99124.CrossRefGoogle Scholar
Bouchez, J. L. 1977. Plastic deformation of quartzites at low temperatures in an area of natural strain gradient. Tectonophysics 39, 2550.CrossRefGoogle Scholar
Carosi, R., Montomoli, C., Rubatto, D. & Visona, D. 2006. Normal-sense shear zones in the core of the Higher Himalayan Crystallines (Bhutan Himalaya): evidence for extrusion? In Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones (eds Law, R. D., Searle, M. P. & Godin, L.), pp. 425–44. Geological Society of London, Special Publication no. 268.Google Scholar
Doutsos, T., Koukouvelas, I., Poulimenos, G., Kokkalas, S., Xypolias, P. & Skourlis, K. 2000. An exhumation model of the south Peloponnesus, Greece. International Journal of Earth Science 89, 350–65.CrossRefGoogle Scholar
Feehan, J. & Brandon, M. T. 1999. Contribution of ductile flow to exhumation of low-T-high-P metamorphic rocks: San Juan-Cascade nappes, NW Washington State. Journal of Geophysical Research 104, 10883–902.CrossRefGoogle Scholar
Forte, A. M. & Bailey, C. M. 2007. Testing the utility of the porphyroclast hyperbolic distribution method of kinematic vorticity analysis. Journal of Structural Geology 29, 9831001.CrossRefGoogle Scholar
Fossen, H. & Tikoff, B. 1993. The deformation matrix for simultaneous simple shearing, pure shearing and volume change, and its application to transpression–transtension tectonics. Journal of Structural Geology 15, 413–22.CrossRefGoogle Scholar
Fossen, H. & Tikoff, B. 1998. Extended models of transpression and transtension, and application to tectonic settings. In Continental Transpressional and Transtensional Tectonics (eds Holdsworth, R. E., Strachan, R. A., & Dewey, J. F.), pp. 1533. Geological Society of London, Special Publication no. 135.Google Scholar
Grasemann, B., Fritz, H. & Vannay, J. C. 1999. Quantitative kinematic flow analysis from the Main Central Thrust Zone (NW-Himalaya, India): implications for a decelerating strain path and the extrusion of orogenic wedges. Journal of Structural Geology 21, 837–53.CrossRefGoogle Scholar
Haynes, S. J. & McQuillan, H. 1974. Evolution of the Zagros suture zone, Southern Iran. Geological Society of America Bulletin 85, 739–44.2.0.CO;2>CrossRefGoogle Scholar
Hobbs, B. E. 1985. The geological significance of microfabric. In Preferred Orientation in Deformed Metals and Rocks (ed. Wenk, H. R.), pp. 463–84. New York: Academic Press.CrossRefGoogle Scholar
Hongn, F. D. & Hippertt, J. F. 2001. Quartz crystallographic and morphologic fabrics during folding/transposition in mylonites. Journal of Structural Geology 23, 8192.CrossRefGoogle Scholar
Jessup, M. J., Law, R. D., Searle, M. P. & Hubbard, M. S. 2006. Structural evolution and vorticity of flow during extrusion and exhumation of the Greater Himalayan Slab, Mount Everest Massif, Tibet/Nepal: implications for orogen-scale flow partitioning. In Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones (eds Law, R. D., Searle, M. P. & Godin, L.), pp. 379414. Geological Society of London, Special Publication no. 268.Google Scholar
Joy, S. & Saha, D. 2000. Dynamically recrystallised quartz c-axis fabrics in greenschist facies quartzites, Singhbhum shear zone and its footwall, eastern India – influence of high fluid activity. Journal of Structural Geology 22, 777–93.CrossRefGoogle Scholar
Kokkalas, S. & Doutsos, T. 2004. Kinematics and strain partitioning in the southeast Hellenides (Greece). Geological Journal 39, 121–40.CrossRefGoogle Scholar
Kruhl, J. H. 1996. Prism- and basal-plane parallel subgrain boundaries in quartz; a microstructural geothermobarometer. Journal of Metamorphic Geology 14, 581–9.CrossRefGoogle Scholar
Kruhl, J. H. 1998. Reply: prism- and basal-plane parallel subgrain boundaries in quartz: a microstructural geothermobarometer. Journal of Metamorphic Geology 16, 142–6.Google Scholar
Lacombe, O., Mouthereau, F., Kargar, S. & Meyer, B. 2006. Late Cenozoic and modern stress fields in the western Fars (Iran): implications for the tectonic and kinematic evolution of central Zagros. Tectonics 25, TC1003, doi: 10.1029/2005TC001831, 27 pp.CrossRefGoogle Scholar
Law, R. D. 1987. Heterogeneous deformation and quartz crystallographic fabric transitions: natural examples from the Moine Thrust zone at the Stack of Glencoul, northern Assynt. Journal of Structural Geology 9, 819–34.CrossRefGoogle Scholar
Law, R. D. 1990. Crystallographic fabrics. A selective review of their applications to research in structural geology. In Deformation Mechanisms, Rheology and Tectonics (eds Knipe, R. J. & Rutter, E. H.), pp. 335–52. Geological Society of London, Special Publication no. 54.Google Scholar
Law, R. D., Casey, M. & Knipe, R. J. 1986. Kinematic and tectonic significance of microstructures and crystallographic fabrics within quartz mylonites from the Assynt and Eriboll regions of the Moine thrust zone, NW Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 77, 99125.CrossRefGoogle Scholar
Law, R. D., Knipe, R. J. & Dayan, H. 1984. Strain path partitioning within thrust sheets: microstructural and petrofabric evidence from the Moine Thrust zone at Loch Eriboll, northwest Scotland. Journal of Structural Geology 6, 477–97.CrossRefGoogle Scholar
Law, R. D., Morgan, S. S., Casey, M., Sylvester, A. G., Nyman, M. 1992. The Papoose Flat Pluton, California: a reassessment of its emplacement history in the light of new microstructural and crystallographic observations. Transaction of the Royal Society of Edinburgh: Earth Sciences 83, 361–75.Google Scholar
Law, R. D., Searle, M. P. & Simpson, R. L. 2004. Strain, deformation temperatures and vorticity of flow at the top of the Greater Himalayan Slab, Everest Massif, Tibet. Journal of Geological Society, London 161, 305–20.CrossRefGoogle Scholar
Lisle, R. J. 1985. Geological Strain Analysis: A Manual for the Rf/ϕ Method. New York: Pergamon Press, 99 pp.Google Scholar
Lister, G. S. 1977. Crossed-girdle c-axis fabrics in quartzites plastically deformed by plane strain and progressive simple shear. Tectonophysics 39, 51–4.CrossRefGoogle Scholar
Lister, G. S. & Dornsiepen, U. F. 1982. Fabric transitions in the Saxony granulite terrain. Journal of Structural Geology 41, 8192.CrossRefGoogle Scholar
Lister, G. S. & Hobbs, B. E. 1980. The simulation of fabric development during plastic deformation and its application to quartzite: the influence of deformation history. Journal of Structural Geology 2, 355–71.CrossRefGoogle Scholar
Lister, G. S. & Williams, P. F. 1979. Fabric development in shear zones: theoretical controls and observed phenomena. Journal of Structural Geology 1, 283–97.CrossRefGoogle Scholar
Mainprice, D., Bouchez, J. L., Blumenfeld, P. & Tubia, J. M. 1986. Dominant c-slip in naturally deformed quartz: implications for dramatic plastic softening at high temperature. Geology 14, 819–22.2.0.CO;2>CrossRefGoogle Scholar
Mohajjel, M. & Fergusson, C. L. 2000. Dextral transpression in Late Cretaceous continental collision, Sanandaj–Sirjan Zone, western Iran. Journal of Structural Geology 22, 1125–39.CrossRefGoogle Scholar
Molinaro, M., Leturmy, P., Guezou, J.-C., Frizon de Lamotte, D. & Eshraghi, S. A. 2005. The structure and kinematics of the southeastern Zagros fold-thrust belt; Iran: from thin-skinned to thick-skinned tectonics. Tectonics 24, TC3007, doi:10.1029/2004TC001633, 19 pp.CrossRefGoogle Scholar
Molinaro, M., Zeyen, H. & Laurencin, X. 2005. Lithospheric structure beneath the south-eastern Zagros Mountains, Iran: recent slab break-off. Terra Nova 17, 116.CrossRefGoogle Scholar
Morgan, S. S. & Law, R. D. 2004. Unusual transition in quartzite dislocation creep regimes and crystal slip systems in the aureole of the Eureka Valley-Joshua Flat-Beer Creek pluton, California: a case for anhydrous conditions created by decarbonation reactions. Tectonophysics 384, 209–31.CrossRefGoogle Scholar
Okudaira, T., Takeshita, T., Hara, I. & Ando, J. 1995. A new estimate of the conditions for transition from basal <a> to prism [c] slip in naturally deformed quartz. Tectonophysics 250, 3146.CrossRefGoogle Scholar
Passchier, C. W. 1988. The use of Mohr circles to describe non-coaxial progressive deformation. Tectonophysics 149, 323–38.CrossRefGoogle Scholar
Passchier, C. W. & Trouw, R. A. J. 2005. Microtectonics. Berlin: Springer-Verlag.Google Scholar
Platt, J. P. & Behrmann, J. H. 1986. Structures and fabrics in a crustal scale shear zone, Betic Cordillera, SE Spain. Journal of Structural Geology 8, 1533.CrossRefGoogle Scholar
Ralser, S., Hobbs, B. E. & Ord, A. 1991. Experimental deformation of a quartz mylonite. Journal of Structural Geology 13, 837–50.CrossRefGoogle Scholar
Ramsay, J. G. 1967. Folding and Fracturing of Rocks. New York: McGraw-Hill.Google Scholar
Ramsay, J. G. & Huber, M. I. 1987. The Techniques of Modern Structural Geology, Vol. 2: Folds and Fractures. London: Academic Press.Google Scholar
Regard, V., Bellier, O., Thomas, J.-C., Abbassi, M. R., Mercier, J., Shabanian, E., Feghhi, K. & Soleymani, S. 2004. Accommodation of Arabia-Eurasia convergence in the Zagros-Makran transfer zone, SE Iran: a transition between collision and subduction through a young deformation system. Tectonics 23, TC4007, doi: 10.1029/2003TC001599, 24 pp.CrossRefGoogle Scholar
Ring, U. & Kassem, O. 2007. The nappe rule: why does it work? Journal of the Geological Society, London 164, 1109–12.CrossRefGoogle Scholar
Sarkarinejad, K. & Azizi, A. 2008. Slip partitioning and inclined dextral transpression along the Zagros Thrust System, Iran. Journal of Structural Geology 30, 116–36.CrossRefGoogle Scholar
Sarkarinejad, K., Faghih, A. & Grasemann, B. 2008. Transpressional deformations within the Sanandaj-Sirjan Metamorphic Belt (Zagros Mountains, Iran). Journal of Structural Geology 30, 818–26.CrossRefGoogle Scholar
Sarkarinejad, K., Godin, L. & Faghih, A. 2009. Kinematic vorticity flow analysis and 40Ar/39Ar geochronology related to inclined extrusion of the HP–LT metamorphic rocks along the Zagros accretionary prism, Iran. Journal of Structural Geology 31, 691706.CrossRefGoogle Scholar
Sarkarinejad, K., Samani, B., Faghih, A., Grasemann, B. & Moradipoor, M. 2010. Implications of strain and vorticity of flow analyses to interpret the kinematics of an oblique convergence event (Zagros Mountains, Iran). Journal of Asian Earth Sciences 38, 3443.CrossRefGoogle Scholar
Sepehr, M. & Cosgrove, J. W. 2005. Role of the Kazerun Fault Zone in the formation and deformation of the Zagros Fold-Thrust Belt, Iran. Tectonics 24, TC5005, doi: 10.1029/2004TC001725, 13 pp.CrossRefGoogle Scholar
Schmid, S. M. & Casey, M. 1986. Complete fabric analysis of some commonly observed quartz c-axis patterns. In Mineral and Rock Deformation: Laboratory Studies – The Paterson Volume (eds Hobbs, B. E. & Heard, H. C.), pp. 263–86. American Geophysical Union, Geophysical Monograph vol. 36. Washington, DC, USA.CrossRefGoogle Scholar
Short, H. A. & Johnson, S. E. 2006. Estimation of vorticity from fibrous calcite veins, central Maine, USA. Journal of Structural Geology 28, 1167–82.CrossRefGoogle Scholar
Simpson, C. & Schmid, S. M. 1983. An evaluation of criteria to deduce the sense of movement in sheared rocks. Geological Society of America Bulletin 94, 1281–8.2.0.CO;2>CrossRefGoogle Scholar
Stöcklin, J. 1974. Possible ancient continental margins in Iran. In The Geology of Continental Margins (eds Burk, C. E. & Drake, C. L.), pp. 873–88. New York: Spring-Verlag.CrossRefGoogle Scholar
Sullivan, W. A. & Law, R. D. 2007. Deformation path partitioning within the transpressional White Mountain shear zone, California and Nevada. Journal of Structural Geology 29, 583–98.CrossRefGoogle Scholar
Talebian, M. & Jackson, J. 2002. Offset on the Main Recent Fault of NW Iran and implications for late Cenozoic tectonics of the Arabia–Eurasia collision zone. Geophysical Journal International 150, 422–39.CrossRefGoogle Scholar
Tatar, M., Hatzfeld, D. & Ghafory-Ashtiyani, M. 2004. Tectonics of the Central Zagros (Iran) deduced from microearthquake seismicity. Geophysical Journal International 156, 255–66.CrossRefGoogle Scholar
Tikoff, B. & Fossen, H. 1995. The limitation of three-dimensional kinematic vorticity analyses. Journal of Structural Geology 17, 1771–84.CrossRefGoogle Scholar
Tullis, J. 1977. Preferred orientation of quartz produced by slip during plane strain. Tectonophysics 39, 87102.CrossRefGoogle Scholar
Tullis, J., Christie, J. M. & Griggs, D. T. 1973. Microstructures and preferred orientations of experimentally deformed quartzites. Geological Society of America Bulletin 84, 297314.2.0.CO;2>CrossRefGoogle Scholar
Vernant, P., Nilforoushan, F., Hatzfeld, D., Abbasi, M. R., Vigny, C., Masson, F., Nankali, H., Martinod, J., Ashtiani, A., Bayer, R., Tavakoli, F. & Chery, J. 2004. Present–day crustal deformation and plate kinematics in the Middle East constrained by GPS measurement in Iran and northern Oman. International Journal of Geophysics 157, 381–98.CrossRefGoogle Scholar
Vernooij, M. G. C., Brok, B. & Kunze, K. 2006 . Development of crystallographic preferred orientations by nucleation and growth of new grains in experimentally deformed quartz single crystals. Tectonophysics 427, 3553.CrossRefGoogle Scholar
Vissers, R. L. M. 1989. Asymmetric quartz c-axis fabrics and flow vorticity: a study using rotated garnets. Journal Structural Geology 11, 231–44.CrossRefGoogle Scholar
Wallis, S. R. 1992. Vorticity analysis in a metachert from the Sanbagawa Belt, SW Japan. Journal of Structural Geology 14, 271–80.CrossRefGoogle Scholar
Wallis, S. R. 1995. Vorticity analysis and recognition of ductile extension in the Sanbagawa Belt, SW Japan. Journal of Structural Geology 17, 1077–93.CrossRefGoogle Scholar
Wallis, S. R., Platt, J. P. & Knott, S. D. 1993. Recognition of syn-convergence extension in accretionary wedges with examples from the Calabrian Arc and the Eastern Alps. American Journal of Science 293, 463–94.CrossRefGoogle Scholar
Wang, Y., Zhang, Y., Fan, W. & Peng, T. 2005. Structural signatures and 40Ar/39Ar geochronology of the Indosinian Xuefengshan tectonic belt, South China Block. Journal of Structural Geology 27, 985–98.CrossRefGoogle Scholar
Xypolias, P. 2009. Some new aspects of kinematic vorticity analysis in naturally deformed quartzites. Journal of Structural Geology 31, 310.CrossRefGoogle Scholar
Xypolias, P. & Doutsos, T. 2000. Kinematics of rock flow in a crustal-scale shear zone: implications for the orogenic evolution of the southwestern Hellenides. Geological Magazine 137, 8196.CrossRefGoogle Scholar
Xypolias, P. & Koukouvelas, I. K. 2001. Kinematic vorticity and strain rate patterns associated with ductile extrusion in the Chelmos Shear Zone (External Hellenides, Greece). Tectonophysics 338, 5977.CrossRefGoogle Scholar
Supplementary material: File

Faghih Supplementary Material

Faghih Supplementary Material

Download Faghih Supplementary Material(File)
File 2.6 MB