Hostname: page-component-7bb8b95d7b-nptnm Total loading time: 0 Render date: 2024-09-18T07:00:11.586Z Has data issue: false hasContentIssue false

Microstructures in titanomagnetites as guides to cooling rates of a Swedish intrusion

Published online by Cambridge University Press:  01 May 2009

G. D. Price*
Affiliation:
Department of Mineralogy and Petrology, University of Cambridge, Downing PlaceCambridge CB2 3EW

Summary

Iron-titanium oxides from Taberg in Sweden exhibit under the electron microscope several microstructural features not visible when studied by optical microscopy, including homogeneous nucleation of magnetitess from ulvöspinelss, and the spinodal decomposition of magnetitesss. Such microstructures have promise as indicators of cooling rates.

Type
Articles
Copyright
Copyright © Cambridge University Press 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Askill, J. 1970. Tracer Diffusion Data for Metals, Alloys and Simple Oxides. New York: IFI/Plenum.CrossRefGoogle Scholar
Buddington, A. F. & Lindsley, D. H. 1964. Iron-titanium oxide minerals and synthetic equivalents. J. Petrology 5, 310–57.CrossRefGoogle Scholar
Cahn, J. W. 1968. Spinodal decomposition. Trans. metall. Soc. A.I.M.E. 242, 166–80.Google Scholar
Carpenter, M. A. 1978. Nucleation of augite at antiphase boundaries in pigeonite. Phys. Chem. Minerals 2, 237–51.CrossRefGoogle Scholar
Champness, P. E. & Lorimer, G. W. 1976. Exsolution in silicates. In Electron Microscopy in Mineralogy (ed. Wenk, H.-R.). Berlin: Springer-Verlag.Google Scholar
Dodson, M. H. 1973. Closure temperatures in cooling geochronological and petrological systems. Contr. Miner. Petol. 40, 259–76.CrossRefGoogle Scholar
Dodson, M. H. 1976. Kinetic processes and thermal history of slowly cooling solids. Nature, Lond. 259, 551–3.CrossRefGoogle Scholar
Giletti, B. J. 1974. Diffusion Related to Geochronology. In Geochemical Transport and Kinetics (ed. Hofmann, A. W. Giletti, B. J. Yoder, H. S. and Yund, R. A.). Carnegie Institution of Washington.Google Scholar
Haggerty, S. E. 1976. Chaps. 4 and 8. In Short Course Notes, vol. 3, chaps. 4 and 8. Mineral Society of America.Google Scholar
Hilliard, J. E. 1970. Spinodal decomposition. In Phase Transformations. American Society of Metallurgy.Google Scholar
Hirsch, P. B., Howie, A., Nicholson, R. B., Pashley, D. W. & Whelan, M. J. 1965. Electron Microscopy of Thin Crystals. London: Butterworth.Google Scholar
Hjelmquist, S. 1949. The titaniferous iron ore deposits of Taberg in S. Sweden. Sver. Geol. Unders. Arsbok 43 (10), 155.Google Scholar
McConnell, J. D. C. 1975. Microstructures of minerals as petrogenetic indicators. Ann. Rev. Earth Planet. Sci. 3, 129–55.CrossRefGoogle Scholar
Mel'nikov, B. N. & Khisina, N. R. 1977. Spinodal decomposition and related partial self-reversal of magnetization in titanomagnetites from the rift zone of Africa. Izvest. Acad. Sci. USSR-Phys. Sol. Earth 12, 672–76.Google Scholar
Mogensen, F. 1946. A ferro-orthotitanate ore from Södra Ulvön. Geol. För. Stockh. Förh 68, 578–88.CrossRefGoogle Scholar
Poltavets, Yu. A. 1976. Discussion of Buddington and Lindsley titanomagnetite geothermometer based on a comparative analysis of equilibration of spinels of the magnetite series. Int. Geol. Rev. 18, 1173–81.CrossRefGoogle Scholar
Ramdohr, P. 1965. The Ore Minerals and Their Intergrowths. Oxford: Pergamon Press.Google Scholar
Rumble, D. 1970. Thermodynamical analysis of phase equilibria in the system Fe2TiO4-Fe3O4-TiO2 . Yb Carnegie Instn Wash. 69, 198.Google Scholar
Scott, E. R. D. 1973. The nature of dark-etching rims in meteoritic taenite. Geochim. cosmochim. Acta 37, 2283–94.CrossRefGoogle Scholar
Vincent, E. A., Wright, J. B., Chevallier, R. & Mathieu, S. 1957. Heating experiments on some natural titaniferous magnetites. Mineral. Mag. 31, 624–55.Google Scholar
Yund, R. A. & MacCallister, R. H. 1969. Kinetics and mechanisms of exsolution. Chem. Geol. 6, 530.CrossRefGoogle Scholar