Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-16T11:37:32.408Z Has data issue: false hasContentIssue false

Polychaete palaeoecology in an early Late Ordovician marine astrobleme of Sweden

Published online by Cambridge University Press:  04 August 2010

MATS E. ERIKSSON*
Affiliation:
Department of Earth and Ecosystem Sciences, Division of Geology, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden
ÅSA M. FRISK
Affiliation:
Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 752 36 Uppsala, Sweden
*
Author for correspondence: Mats.Eriksson@geol.lu.se

Abstract

The post-impact Dalby Limestone (Kukruse; Upper Ordovician) of the Tvären crater, southeastern Sweden, has been analysed with regards to polychaetes, as represented by scolecodonts. A palaeoecological succession is observed in the Tvären-2 drill core sequence, as the vacant ecospace was successively filled by a range of benthonic, nektonic and planktonic organisms. Scolecodonts belong to the first non-planktonic groups to appear and constitute one of the most abundant fossil elements. The polychaete assemblage recorded has an overall composition characteristic of that of the Upper Ordovician of Baltoscandia. Oenonites, Vistulella, Mochtyella and the enigmatic ‘Xanioprion’ represent the most common genera, whereas Pteropelta, Protarabellites?, Atraktoprion and Xanioprion are considerably more rare. The assemblage differs from coeval ones particularly in its poorly represented ramphoprionid fauna and the relatively high frequency of ‘Xanioprion’. A taxonomic succession and changes in abundance and relative frequency of different taxa is observed from the deepest part of the crater and upwards towards more shallow water environments. The initial post-impact assemblage does not, however, necessarily represent a benthonic colonization of the crater floor. Instead it seems to be a taphocoenosis, as indicated by its taxonomic correspondence to the rim facies fauna recovered from Dalby Limestone erratics of the Ringsön island. The Tvären succession has yielded considerably richer scolecodont assemblages than hitherto recorded from the approximately coeval Lockne crater, possibly as a consequence of shallower water settings in the former area.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldridge, R. J., Jeppsson, L. & Dorning, K. J. 1993. Early Silurian oceanic episodes and events. Journal of the Geological Society, London 150, 501–13.CrossRefGoogle Scholar
Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. 1980. Extraterrestrial cause for the Cretaceous–Tertiary extinction. Science 208, 1095–108.CrossRefGoogle ScholarPubMed
Bergström, S. M. 1962. Conodonts from the Ludibundus Limestone (Middle Ordovician) of the Tvären area (S.E. Sweden). Arkiv för Mineralogi och Geologi Band 3, 1, 161.Google Scholar
Bergström, S. M., Chen, X., Gutiérrez-Marco, J. C. & Dronov, A. 2009. The new chronostratigraphic classification of the Ordovician System and its relations to major regional series and stages and to δ13C chemostratigraphy. Lethaia 42, 97107.CrossRefGoogle Scholar
Bergström, S. M., Huff, W. D., Kolata, D. R., Yost, D. A. & Hart, C. 1997. A unique Middle Ordovician K-bentonite bed succession at Röstånga, S. Sweden. GFF 119, 231–44.CrossRefGoogle Scholar
Bergström, S. M., Larsson, K., Pålsson, C. & Ahlberg, P. 2002. The Almelund Shale, a replacement name for the Upper Didymograptus Shale and the Lower Dicellograptus Shale in the lithostratigraphical classification of the Ordovician succession in Scania, Southern Sweden. Bulletin of the Geological Society of Denmark 49, 41–7.CrossRefGoogle Scholar
Cockell, C. S. & Bland, P. A. 2005. The evolutionary and ecological benefits of asteroid and comet impacts. TRENDS in Ecology and Evolution 20, 175–9.CrossRefGoogle ScholarPubMed
Cockell, C. S., Osinski, G. R. & Lee, P. 2003. The impact crater as a habitat: effects of impact-processing of target materials. Astrobiology 3, 181–91.CrossRefGoogle ScholarPubMed
Ebbestad, J. O. R. & Högström, A. E. S. 2007. Ordovician of the Siljan District, Sweden. In WOGOGOB 2007, 9th meeting of the Working Group on Ordovician Geology of Baltoscandia. Field Guide and Abstracts (eds Ebbestad, J. O. R., Wickström, L. M. & Högström, A. E. S.), pp. 1–110. Sveriges geologiska undersökning, Rapporter och meddelanden 128.Google Scholar
Eisenack, A. 1939. Einige neue Annelidenreste aus dem Silur und dem Jura des Baltikums. Zeitschrift für Geschiebeforschung und Flachlandsgeologie 15, 153–76.Google Scholar
Eisenack, A. 1975. Beiträge zur Anneliden-Forschung, I. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 150, 227–52.Google Scholar
Eisenack, A. 1976. Mikrofossilen aus dem Vaginatenkalk von Hälludden, Öland. Palaeontographica Abteilung A 154, 181203.Google Scholar
Eller, E. R. 1955. Additional scolecodonts from the Potter Farm Formation of the Devonian of Michigan. Annals of the Carnegie Museum 33, 347–86.CrossRefGoogle Scholar
Eriksson, M. 1997. Lower Silurian polychaetaspid polychaetes from Gotland, Sweden. GFF 119, 213–30.CrossRefGoogle Scholar
Eriksson, M. E. 2006. The Silurian Ireviken Event and vagile benthic faunal turnovers (Polychaeta; Eunicida) on Gotland, Sweden. GFF 128, 91–5.CrossRefGoogle Scholar
Eriksson, M. & Bergman, C. F. 2003. Late Ordovician jawed polychaete faunas of the type Cincinnatian region, U.S.A. Journal of Paleontology 77, 509–23.Google Scholar
Eriksson, M. E., Bergman, C. F. & Jeppsson, L. 2004. Silurian scolecodonts. Review of Palaeobotany and Palynology 131, 269300.CrossRefGoogle Scholar
Eriksson, M. E. & Hints, O. 2009. Vagrant benthos (Annelida; Polychaeta) associated with Upper Ordovician carbonate mud-mounds of subsurface Gotland, Sweden. Geological Magazine 146, 451–62.CrossRefGoogle Scholar
Eriksson, M. E., Nilsson, E. K. & Jeppsson, L. 2009. Vertebrate extinctions and reorganizations during the Late Silurian Lau Event. Geology 38, 739–42.CrossRefGoogle Scholar
Erwin, D. H. 2001. Lessons from the past: biotic recoveries from mass extinctions. PNAS 98, 5399–403.CrossRefGoogle ScholarPubMed
Flodén, T., Tunander, P. & Wickman, F. E. 1986. The Tvären Bay structure, an astrobleme in southeastern Sweden. Geologiska Föreningens i Stockholm Förhandlingar 108, 225–34.CrossRefGoogle Scholar
Frisk, Å. M. & Ebbestad, J. O. R. 2007. Paragastropods, Tergomya, and Gastropoda (Mollusca) from the Upper Ordovican Dalby Limestone, Sweden. GFF 129 (2), 8399.CrossRefGoogle Scholar
Frisk, Å. M. & Ormö, J. 2007. Facies distribution of post- impact sediments in the Ordovician Lockne and Tvären impact craters: indications for unique impact-generated environments. Meteoritics & Planetary Science 42 (11), 1971–84.CrossRefGoogle Scholar
Grahn, Y. & Nõlvak, J. 1993. Chitinozoan dating of Ordovician impact events in Sweden and Estonia. A preliminary note. Geologiska Föreningens i Stockholm Förhandlingar 115, 263–4.CrossRefGoogle Scholar
Grahn, Y., Nõlvak, J. & Paris, F. 1996. Precise chitinozoan dating of Ordovician impact events in Baltoscandia. Journal of Micropalaeontology 15, 2135.CrossRefGoogle Scholar
Hammer, Ø., Harper, D. A. T. & Ryan, P. D. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4, 9 pp.Google Scholar
Hinde, G. J. 1879. On annelid jaws from the Cambro-Silurian, Silurian and Devonian formations in Canada and from the Lower Carboniferous in Scotland. Quarterly Journal of the Geological Society of London 35, 370–89.CrossRefGoogle Scholar
Hints, O. 1998. Late Viruan (Caradoc) polychaete jaws from North Estonia and the St. Petersburg region. Acta Palaeontologica Polonica 43, 471516.Google Scholar
Hints, O. 2000. Ordovician eunicid polychaetes of Estonia and surrounding areas: review of their distribution and diversification. Review of Palaeobotany and Palynology 113, 4155.CrossRefGoogle ScholarPubMed
Hints, O. 2001. Distribution of scolecodonts. In Estonian Geological Sections. Valga (10) drill core (ed. Põldvere, A.), pp. 1214. Geological Survey of Estonia, Tallinn.Google Scholar
Hints, O. & Eriksson, M. E. 2007 a. Diversification and biogeography of scolecodont-bearing polychaetes in the Ordovician. Palaeogeography, Palaeoclimatology, Palaeoecology 245, 95114.CrossRefGoogle Scholar
Hints, O. & Eriksson, M. E. 2007 b. Biogeography of Ordovician and Silurian scolecodont-bearing polychaetes. Acta Palaeontologica Sinica 46 (Suppl.), 181–7.Google Scholar
Hints, O. & Eriksson, M. E. 2010. Ordovician polychaeturid polychaetes: taxonomy, distribution and palaeoecology. Acta Palaeontologica Polonica 55 (2), 309–20.CrossRefGoogle Scholar
Hints, O., Hints, L., Meidla, T. & Sohar, K. 2003. Biotic effects of the Ordovician Kinnekulle ash-fall recorded in northern Estonia. Bulletin of the Geological Society of Denmark 50, 115–23.CrossRefGoogle Scholar
Hints, O., Killing, K., Männik, P. & Nestor, V. 2006. Frequency patterns of chitinozoans, scolecodont, and conodonts in the upper Llandovery and lower Wenlock of the Paatsalu core, western Estonia. Proceedings of the Estonian Academy of Sciences 55, 128–55.Google Scholar
Hints, O. & Nõlvak, J. 2006. Early Ordovician scolecodont and chitinozoans from Tallinn, North Estonia. Review of Palaeobotany and Palynology 139, 189209.CrossRefGoogle Scholar
Jaanusson, V. 1957 a. Unterordovicische Illaeniden aus Skandinavien. Bulletin of the Geological Institutions of the University of Uppsala 37, 79165.Google Scholar
Jaanusson, V. 1957 b. Middle Ordovician ostracodes of central and southern Sweden. Bulletin of the Geological Institutions of the University of Uppsala 37, 173442.Google Scholar
Jeppsson, L. 1998. Silurian oceanic events: summary of general characteristics. In Silurian cycles: Linkages of dynamic stratigraphy with atmospheric, oceanic and tectonic changes (eds Landing, E. & Johnson, M. E.), pp. 239–57. James Hall Centennial Volume. New York State Museum Bulletin no. 491.Google Scholar
Jeppsson, L. 2006. Conodont-based revisions of the Late Ludfordian on Gotland. GFF 127, 273–82.CrossRefGoogle Scholar
Kielan-Jaworowska, Z. 1961. On two Ordovician polychaete jaw apparatuses. Acta Palaeontologica Polonica 6, 237–59.Google Scholar
Kielan-Jaworowska, Z. 1962. New Ordovician genera of polychaete jaw apparatuses. Acta Palaeontologica Polonica 7, 291332.Google Scholar
Kielan-Jaworowska, Z. 1966. Polychaete jaw apparatuses from the Ordovician and the Silurian of Poland and a comparison with modern forms. Palaeontologia Polonica 16, 1152.Google Scholar
Kozłowski, R. 1956. Sur quelques appareils masticateurs des Annélides Polychètes ordoviciens. Acta Palaeontologica Polonica 1, 165205.Google Scholar
Kozur, H. W. 1998. Some aspects of the Permian–Triassic boundary (PTB) and of the possible causes for the biotic crisis around this boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 143, 227–72.CrossRefGoogle Scholar
Lindström, M., Flodén, T., Grahn, Y. & Kathol, B. 1994. Post-impact deposits in Tvären, a marine Middle Ordovician crater south of Stockholm, Sweden. Geological Magazine 131, 91103.CrossRefGoogle Scholar
Lindström, M., Flodén, T., Puura, V. & Suuroja, K. 1992. The Kärdla, Tvären and Lockne Craters – possible evidences of an Ordovician asteroid swarm. Proceedings of the Estonian Academy of Sciences 41, 4553.Google Scholar
Lindström, M., Ormö, J., Sturkell, E. & von Dalwigk, I. 2005. The Lockne crater: revision and reassessment of structure and impact stratigraphy. In Impact Tectonics (eds Koeberl, C. & Henkel, H.), pp. 357–88. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
Lindström, M., Shuvalov, V. & Ivanov, B. 2005. Lockne crater as a result of marine-target oblique impact. Planetary and Space Science 53, 803–15.CrossRefGoogle Scholar
Lindström, M., Sturkell, E. F. F., Torberg, R. & Ormö, J. 1996. The marine impact crater at Lockne, central Sweden. GFF 118, 193206.CrossRefGoogle Scholar
Mierzejewski, P. 1978. New placognath Eunicida (Polychaeta) from the Ordovician and Silurian of Poland. Acta Geologica Polonica 28, 273–81.Google Scholar
Ormö, J. 1994. The pre-impact Ordovician stratigraphy of the Tvären Bay impact structure, SE Sweden. GFF 116, 139–44.CrossRefGoogle Scholar
Ormö, J., Hill, A., Self-Trail, J. M. & Frisk, Å. M. 2009. A method to determine the end of impact-related sedimentation at marine-target craters: geochemistry and micropaleontology of the transition from resurge to secular deposits at the Lockne, Tvären, and Chesapeake Bay impact structures. 40th Lunar and Planetary Science Conference, Houston, USA, abstract no. 1318.Google Scholar
Ormö, J., Sturkell, E. & Lindström, M. 2007. Sedimentological analysis of resurge deposits at the Lockne and Tvären craters: clues to flow dynamics. Meteoritics & Planetary Science 42 (11), 1929–43.CrossRefGoogle Scholar
Schallreuter, R. 1983. Sularpschiefer (Mittelordoviz) als Geschiebe in Norddeutschland. Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg 54, 5564.Google Scholar
Schmitz, B., Harper, D. A. T., Peucker-Ehrenbrink, B., Stouge, S., Alwmark, C., Cronholm, A., Bergström, S. M., Tassinari, M. & Xiaofeng, W. 2008. Asteroid breakup linked to the Great Ordovician Biodiversification Event. Nature Geoscience 1, 4953.CrossRefGoogle Scholar
Shuvalov, V., Ormö, J. & Lindström, M. 2005. Hydrocode simulation of the Lockne marine target impact event. In Impact Tectonics (eds Koeberl, C. & Henkel, H.), pp. 405–22. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
Smelror, M. & Dypvik, H. 2006. The sweet aftermath: environmental changes and biotic restoration following the marine Mjølnir impact (Volgian–Ryazanian boundary, Barents Shelf). In Biological Processes Associated with Impact Events (eds Cockell, C., Koeberl, C. & Gilmour, I.), pp. 143–78. Berlin, Heidelberg: Springer Verlag.CrossRefGoogle Scholar
Stauffer, C. R. 1933. Middle Ordovician Polychaeta from Minnesota. Bulletin of the Geological Society of America 44, 11731218.CrossRefGoogle Scholar
Strachan, I. 1959. Graptolites from the Ludibundus beds (Middle Ordovician) of Tvären, Sweden. Bulletin of the Geological Institutions of the University of Uppsala 38, 168.Google Scholar
Sturkell, E. F. F., Ormö, J. Nõlvak, J. & Wallin, Å. 2000. Distant ejecta from the Lockne marine-target impact crater, Sweden. Meteoritics & Planetary Science 35 (5), 929–36.CrossRefGoogle Scholar
Szaniawski, H. 1970. Jaw apparatuses of the Ordovician and Silurian polychaetes from the Mielnik borehole. Acta Palaeontologica Polonica 15, 445–72.Google Scholar
Szaniawski, H. 1996. Scolecodonts. In Palynology: principles and applications (eds Jansonius, J. & McGregor, D. C.), pp. 337–54. American Association of Stratigraphic Palynologists Foundation, Volume 1.Google Scholar
Szaniawski, H. & Imajima, M. 1996. Hartminiellidae – living fossils among polychaetes. Acta Palaeontologica Polonica 41, 111–25.Google Scholar
Thorslund, P. 1940. On the Chasmops Series of Jemtland and Södermanland (Tvären). Sveriges Geologiska Undersökning C 436, 1191.Google Scholar
Wallin, Å. & Hagenfeldt, S. E. 1996. Biostratigraphical investigation of Middle Ordovician acritarchs in the post-impact sequence in the Tvären-2 core, Sweden. GFF 118, 7982.CrossRefGoogle Scholar
Webby, B. D., Cooper, R. A., Bergström, S. M. & Paris, F. 2004. Stratigraphic framework and time slices. In The Great Ordovician Biodiversification Event (eds Webby, B. D., Paris, F., Droser, M. L. & Percival, I. G.), pp. 41–7. New York: Columbia University Press.CrossRefGoogle Scholar
Wickman, F. E. 1988. Possible impacts in Sweden. In Deep drilling in crystalline bedrock (eds Bodén, A. & Eriksson, K. G.), pp. 298327. Berlin: Springer Verlag.CrossRefGoogle Scholar