Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-21T12:50:52.281Z Has data issue: false hasContentIssue false

The primary crescumulates of the Lizard peridotite, Cornwall

Published online by Cambridge University Press:  01 May 2009

A. T. V. Rothstein
Affiliation:
Department of Geology, Portsmouth Polytechnic, Burnaby Road, Portsmouth PO1 3QL, Hampshire, England

Summary

Preserved in the deformed peridotites of the Lizard, Cornwall, are relics of intricate primary precipitates of olivine. The mineral compositions of those rocks with an abundance of primary relics are typical of the primary assemblage Lizard peridotite. In detail the olivine primary structures resemble, but are not identical to, the crescumulates described from various layered ultrabasic intrusions. The available evidence shows distinctive specific features in the Lizard crescumulates in the scale and morphology of the structures and in the conditions of growth.

Type
Articles
Copyright
Copyright © Cambridge University Press 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arndt, N. T., Naldrett, A. J. & Pyke, D. R. 1977. Komatiitic and iron-rich tholeiitic lavas of Munro Township, North-east Ontario J. Petrology 18 (2), 319–69.CrossRefGoogle Scholar
Belyankin, D. S., Ivanov, B. V. & Lapin, V. V. 1952. Petrografiya Tekhnicheskogo Kamnya. Moscow: Publishing House of USSR Academy of Sciences.Google Scholar
Brown, G. M. 1956. The Layered Ultrabasic Rocks of Rhum, Inner Hebrides. Phil. Trans. R. Soc. Ser. B 240, 153.Google Scholar
Conquéré, F. 1977. Pétrologie des pyroxénites litées dans les complexes ultramafiques de l'Ariège (France) et autres gisements de lherzolites á spinelle. I. Compositions minéralogiques et chimiques, évolution d'équilibre des pyroxénites Bull. Soc. franc. Min. Crist. 100, 4280.Google Scholar
Dick, H. J. B. 1977. Partial melting in the Josephine Peridotite. I. Effect on mineral composition and its consequence for geobarometry and geothermometry Am. J. Sci. 277, 768800.CrossRefGoogle Scholar
Dick, H. J. B. & Sinton, J. M. 1979. Compositional layering in alpine peridotites: evidence for pressure solution creep in the mantle. J. Geol. 87, 403–16.CrossRefGoogle Scholar
Donaldson, C. H. 1974. Olivine crystal types in Harrisitic Rocks of the Rhum Pluton and in Archaean Spinifex Rocks. Bull. geol. Soc. Am. 85, 1721–26.2.0.CO;2>CrossRefGoogle Scholar
Donaldson, C. H. 1976. An experimental investigation of Olivine Morphology Contr. Miner. Petrol. 57, 187213.CrossRefGoogle Scholar
Donaldson, C. H. 1977. Laboratory duplication of comb layering in the Rhum pluton Mineralog. Mag. 41, 323–36.CrossRefGoogle Scholar
Donaldson, C. H. 1978. Petrology of the Uppermost Upper Mantle deduced from Spinel-lherzolite and Harzburgite nodules at Calton Hill, Derbyshire. Contr. Miner. Petrol. 65, 363–77.CrossRefGoogle Scholar
Flett, J. S. & Hill, J. B. 1946. The geology of the Lizard and Meneage. Mem. geol. Surv. GB. Sheet 359, 2nd ed., 1946 (revised).Google Scholar
Friend, C. R. L. & Hughes, D. J. 1977. Archaean aluminous ultrabasic rocks with primary igneous textures from the Fiskenaesset region, South-west Greenland Earth Planet. Sci. Lett. 36, 157–67.CrossRefGoogle Scholar
Green, D. H. 1964(a). The petrogenesis of the high-temperature peridotite in the Lizard Area, Cornwall. J. Petrology 5 (1), 134–88.CrossRefGoogle Scholar
Green, D. H. 1964(b). A re-study and re-interpretation of the Geology of the Lizard Peninsula, Cornwall. In Present Views on Some Aspects of the Geology of Devon and Cornwall (Ed. Hosking, K. F. G. and G. Shrimpton, J.), pp. 87114. (Penzance: R. Geol. Soc. Cornwall).Google Scholar
Irvine, T. N. 1967. Chromian spinel as a petrogenetic indicator. Petrologic applications Can. J. Earth Sci. 4, 71103.CrossRefGoogle Scholar
Jackson, E. D. 1971. The origin of ultramafic rocks by cumulus processes Fortschr. Miner. 48, 128–74.Google Scholar
Leblanc, M. 1978. Pétrographie et géochimie des chromites de Nouvelle-Caledonie: essai sur l'évolution des péridotites et la genèse de corps chromiferes C. r. Acad. Sci., Paris 287, 771–4.Google Scholar
Lewis, J. D. 1971. ‘Spinifex Texture’ in a slag, as evidence for its origin in rocks. Rep. geol.. Surv. West. Aust. 45–9.Google Scholar
Lewis, J. D. & Williams, I. R. 1973. The petrology of an ultramafic lava near Murphy Well; Eastern Goldfields, Western Australia. Rep. geol. Surv. West. Aust. 60–8.Google Scholar
Lofgren, G. E. & Donaldson, C. H. 1975. Curved branching crystals and differentiation in comb-layered rocks. Contr. Miner. Petrol. 49, 309–19.CrossRefGoogle Scholar
Menzies, M. 1973. Mineralogy and partial melt textures within an ultramafic-mafic body, Greece Contr. Miner. Petrol. 42, 273–85.CrossRefGoogle Scholar
Nicholas, A., Bouchez, J. L., Boudier, F. & Mercier, J.-C. C. 1971. Textures, structures and fabrics due to solid state flow in some European lherzolites. Tectonophysics 12, 5586.CrossRefGoogle Scholar
Nicholas, A., Boudier, F. & Bouchez, J. L. 1980. Interpretation of peridotite structures from ophiolitic and oceanic environments. Am. J. Sci. 280-A, Pt. 1, 192210.Google Scholar
Robins, B. 1973. Crescumulate layering in a gabbroic body on Seiland, northern Norway Geol. Mag. 109, 533–42.CrossRefGoogle Scholar
Rothstein, A. T. V. 1957. The Dawros peridotite, Connemara, Eire Q. Jl geol. Soc. Lond. 113, 125.CrossRefGoogle Scholar
Rothstein, A. T. V. 1971. A primary igneous texture from the Lizard Peridotite, Cornwall Geol. Mag. 108, 393–8.CrossRefGoogle Scholar
Rothstein, A. T. V. 1972. Spinets from the Dawros Peridotite, Connemara, Ireland Mineralog. Mag. 38, 957–60.CrossRefGoogle Scholar
Rothstein, A. T. V. 1977. The distribution and origin of primary textures in the Lizard peridotite, Cornwall Proc. Geol. Ass. 88 (2), 93105.CrossRefGoogle Scholar
Rothstein, A. T. V. 1980. The Lizard complex as an ophiolite. Nature Lond. 286, 307.CrossRefGoogle Scholar
Smith, D. 1977. The origin and interpretation of spinel-pyroxene clusters in peridotite J. Geol. 85, 476–82.CrossRefGoogle Scholar
Taubeneck, W. H. & Poldervaart, A. 1960. Geology of the Elkhorn Mountains, North-eastern Oregon. 2. Willow Lake Intrusion Bull. geol. Soc. Am. 71, 1295–322.CrossRefGoogle Scholar
Varne, R. 1977. On the origin of spinet lherzolite inclusions in basaltic rocks from Tasmania and elsewhere J. Petrology 18, 123.CrossRefGoogle Scholar
Vinogradov, A. P., Yaroshevsky, A. A. & Ilyin, N. P. 1971. A physico-chemical model of element separation in the differentiation of mantle material. Phil. Trans. R. Soc. A 268, 409–21.Google Scholar
Wadsworth, W. J. 1961. The layered ultrabasic rocks of south-west Rhum, Inner Hebrides. Phil. Trans. R. Soc. B 244, 2164.Google Scholar
Wells, R.A. 1977. Pyroxene thermometry in simple and complex systems. Contr. Miner. Petrol. 62, 129–39.CrossRefGoogle Scholar
Wood, B. J. & Banno, S. 1973. Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems Contr. Miner. Petrol. 42, 109–24.CrossRefGoogle Scholar