Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-17T08:04:22.260Z Has data issue: false hasContentIssue false

Rapid extensional unroofing of a granite–migmatite dome with relics of high-pressure rocks, the Podolsko complex, Bohemian Massif

Published online by Cambridge University Press:  11 February 2016

JIŘÍ ŽÁK*
Affiliation:
Institute of Geology and Paleontology, Faculty of Science, Charles University, Albertov 6, Prague, 12843, Czech Republic
JIŘÍ SLÁMA
Affiliation:
Institute of Geology, Czech Academy of Sciences, Rozvojová 269, Prague, 16500, Czech Republic
MIROSLAV BURJAK
Affiliation:
Institute of Geology and Paleontology, Faculty of Science, Charles University, Albertov 6, Prague, 12843, Czech Republic Geotest, PLC, Olšanská 3, Prague, 13000, Czech Republic
*
Author for correspondence: jirizak@natur.cuni.cz

Abstract

The Podolsko complex, Bohemian Massif, is a high-grade dome that is exposed along the suprastructure–infrastructure boundary of the Variscan orogen and records snapshots of its protracted evolution. The dome is cored by leucocratic migmatites and anatectic granites that enclose relics of high- to ultrahigh-pressure rocks and is mantled by biotite migmatites and paragneisses whose degree of anatexis decreases outwards. Our new U–Pb zircon ages indicate that the leucocratic migmatites were derived from Early Ordovician (c. 480 Ma) felsic igneous crust; the same age is inferred for melting the proto-source of the metapelitic migmatites. The relics of high- to ultrahigh-pressure rocks suggest that at least some portions of the complex witnessed an early Variscan subduction to mantle depths, followed by high-temperature anatexis and syntectonic growth of the Podolsko dome in the middle crust at c. 340–339 Ma. Subsequently, the dome exhumation was accommodated by crustal-scale extensional detachments. Similar c. 340 Ma ages have also been reported from other segments of the Variscan belt, yet the significance of this tectonothermal event remains uncertain. Here we conclude that the 340 Ma age post-dates the high-pressure metamorphism; the high temperatures required to cause the observed isotopic resetting and new growth of zircon were probably caused by heat input from the underlying mantle and, finally, the extensional unroofing of the complex requires a minimum throw of about 8–10 km. We use this as an argument for significant early Carboniferous palaeotopography in the interior of the Variscan orogen.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerman, L., Pašava, J. & Erban, V. 2013. Re–Os geochemistry and geochronology of the Ransko gabbro–peridotite massif, Bohemian Massif. Mineralium Deposita 48, 799804.CrossRefGoogle Scholar
Altherr, R., Henes-Klaiber, U., Hegner, E., Satir, M. & Langer, C. 1999. Plutonism in the Variscan Odenwald (Germany): from subduction to collision. International Journal of Earth Sciences 88, 422–43.CrossRefGoogle Scholar
Asch, K. 2003. The 1:5 million international geological map of Europe and adjacent areas: development and implementation of a GIS-enabled concept. Geologisches Jahrbuch, Sonderhefte, A3. E. Stuttgart: Schweizerbart Publishers.Google Scholar
Babuška, V. & Plomerová, J. 2013. Boundaries of mantle-lithosphere domains in the Bohemian Massif as extinct exhumation channels for high-pressure rocks. Gondwana Research 23, 973–87.CrossRefGoogle Scholar
Ballévre, M., Bosse, V., Ducassou, C. & Pitra, P. 2009. Palaeozoic history of the Armorican Massif: models for the tectonic evolution of the suture zones. Comptes Rendus Geoscience 341, 174201.CrossRefGoogle Scholar
Beard, B. L., Medaris, L. G., Johnson, C. M., Brueckner, H. K. & Mísař, Z. 1992. Petrogenesis of Variscan high-temperature Group A eclogites from the Moldanubian Zone of the Bohemian Massif, Czechoslovakia. Contributions to Mineralogy and Petrology 111, 468–83.CrossRefGoogle Scholar
Beaumont, C., Jamieson, R. A., Nguyen, M. H. & Lee, B. 2001. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414, 738–42.CrossRefGoogle ScholarPubMed
Borradaile, G. & Henry, B. 1997. Tectonic applications of magnetic susceptibility and its anisotropy. Earth-Science Reviews 42, 4993.CrossRefGoogle Scholar
Borradaile, G. J. & Jackson, M. 2010. Structural geology, petrofabrics and magnetic fabrics (AMS, AARM, AIRM). Journal of Structural Geology 32, 1519–51.CrossRefGoogle Scholar
Brueckner, H. K., Medaris, L. G. & Bakun-Czubarów, N. 1991. Nd and Sr age isotope patterns from Variscan eclogites of the eastern Bohemian Massif. Neues Jahrbuch für Mineralogie, Abhandlungen 163, 169–96.Google Scholar
Brun, J. P. & Van Den Driessche, J. 1994. Extensional gneiss domes and detachment fault systems: structure and kinematics. Bulletin de la Société Géologique de France 165, 519–30.Google Scholar
Carreras, J. & Capella, I. 1994. Tectonic levels in the Palaeozoic basement of the Pyrenees: a review and a new interpretation. Journal of Structural Geology 16, 1509–24.CrossRefGoogle Scholar
Carswell, D. A. & O'Brien, P. J. 1993. Thermobarometry and geotectonic significance of high-pressure granulites: examples from the Moldanubian Zone of the Bohemian Massif in Lower Austria. Journal of Petrology 34, 427–59.CrossRefGoogle Scholar
Charles, N., Faure, M. & Chen, Y. 2009. The Montagne Noire migmatitic dome emplacement (French Massif Central): new insights from petrofabric and AMS studies. Journal of Structural Geology 31, 1423–40.CrossRefGoogle Scholar
Cooke, R. A. & O'Brien, P. J. 2001. Resolving the relationship between high P–T rocks and gneisses in collisional terranes: an example from the Gföhl gneiss–granulite association in the Moldanubian Zone, Austria. Lithos 58, 3354.CrossRefGoogle Scholar
Costa, S. & Rey, P. F. 1995. Lower crustal rejuvenation and growth during post-thickening collapse: insights from a crustal cross section through a Variscan metamorphic core complex. Geology 23, 905–8.2.3.CO;2>CrossRefGoogle Scholar
Crowley, Q. G., Floyd, P. A., Winchester, J. A., Franke, W. & Holland, J. G. 2000. Early Palaeozoic reft-related magmatism in Variscan Europe: fragmentation of the Armorican Terrane Assemblage. Terra Nova 12, 171–80.CrossRefGoogle Scholar
Culshaw, N. G., Beaumont, C. & Jamieson, R. A. 2006. The orogenic superstructure–infrastructure concept: revisited, quantified, and revived. Geology 34, 733–6.CrossRefGoogle Scholar
de Sitter, L. U. & Zwart, H. J. 1960. Tectonic development in supra and infra-structures of a mountain chain. Proceedings of the 21st International Geological Congress, Copenhagen, pp. 248–56.Google Scholar
Dewey, J. F. 1988. Extensional collapse of orogens. Tectonics 7, 1123–39.CrossRefGoogle Scholar
Dobrzhinetskaya, L. F. & Faryad, S. W. 2011. Frontiers of ultrahigh-pressure metamorphism: view from field and laboratory. In Ultrahigh-Pressure Metamorphism: 25 Years after the Discovery of Coesite and Diamond (eds Dobrzhinetskaya, L. F., Faryad, S. W., Wallis, S. & Cuthbert, S.), pp. 139. Amsterdam: Elsevier.Google Scholar
Dörr, W. & Zulauf, G. 2010. Elevator tectonics and orogenic collapse of a Tibetan-style plateau in the European Variscides: the role of the Bohemian shear zone. International Journal of Earth Sciences 99, 299325.CrossRefGoogle Scholar
Dörr, W. & Zulauf, G. 2012. Reply to W. Franke on W. Dörr and G. Zulauf elevator tectonics and orogenic collapse of a Tibetan-style plateau in the European Variscides: the role of the Bohemian shear zone. International Journal of Earth Sciences 101, 2035–41.CrossRefGoogle Scholar
Dostal, J., Patočka, F. & Pin, C. 2001. Middle/Late Cambrian intracontinental rifting in the central West Sudetes, NE Bohemian Massif (Czech Republic): geochemistry and petrogenesis of bimodal volcanic rocks. Geological Journal 36, 117.CrossRefGoogle Scholar
Faryad, S. W. & Kachlík, V. 2013. New evidence of blueschist facies rocks and their geotectonic implication for Variscan suture(s) in the Bohemian Massif. Journal of Metamorphic Geology 31, 6382.CrossRefGoogle Scholar
Faryad, S. W., Kachlík, V., Sláma, J. & Hoinkes, G. 2015. Implication of corona formation in a metatroctolite to the granulite facies overprint of HP–UHP rocks in the Moldanubian Zone (Bohemian Massif). Journal of Metamorphic Geology 33, 295310.CrossRefGoogle Scholar
Faryad, S. W., Nahodilová, R. & Dolejš, D. 2010. Incipient eclogite facies metamorphism in the Moldanubian granulites revealed by mineral inclusions in garnet. Lithos 114, 5469.CrossRefGoogle Scholar
Faryad, S. W. & Žák, J. 2016. High-pressure granulites of the Podolsko complex, Bohemian Massif: an example of crustal rocks that were subducted to mantle depths and survived a pervasive mid-crustal high-temperature overprint. Lithos, doi: 10.1016/j.lithos.2016.01.005.CrossRefGoogle Scholar
Fediuková, E. & Fediuk, F. 1971. Moldanubian granulites of the Písek–Týn area. Acta Universitatis Carolinae, Geologica 1, 2547.Google Scholar
Ferré, E. C., Teyssier, C., Jackson, M., Hill, J. W. & Rainey, E.S.G. 2002. Magnetic susceptibility anisotropy: a new petrofabric tool in migmatites. Journal of Geophysical Research 108, 2086, doi: 10.1029/2002JB001790.Google Scholar
Finger, F., Gerdes, A., Janoušek, V., René, M. & Riegler, G. 2007. Resolving the Variscan evolution of the Moldanubian sector of the Bohemian Massif: the significance of the Bavarian and the Moravo–Moldanubian tectonometamorphic phases. Journal of Geosciences 52, 928.Google Scholar
Finger, F. & Krenn, E. 2007. Three metamorphic monazite generations in a high-pressure rock from the Bohemian Massif and the potentially important role of apatite in stimulating polyphase monazite growth along a PT loop. Lithos 95, 103–15.CrossRefGoogle Scholar
Fišera, M., Vrána, S. & Kotrba, Z. 1982. Orthopyroxene–garnet granulites in the Podolsko complex. Bulletin of the Geological Survey , Prague 57, 321–8.Google Scholar
Franěk, J., Schulmann, K. & Lexa, O. 2006. Kinematic and rheological model of exhumation of high pressure granulites in the Variscan orogenic root: example of the Blanský les granulite, Bohemian Massif, Czech Republic. Mineralogy and Petrology 86, 253–76.CrossRefGoogle Scholar
Franěk, J., Schulmann, K., Lexa, O., Tomek, C. & Edel, J. B. 2011. Model of syn-convergent extrusion of orogenic lower crust in the core of the Variscan belt: implications for exhumation of high-pressure rocks in large hot orogens. Journal of Metamorphic Geology 29, 5378.CrossRefGoogle Scholar
Franke, W. 1999. Tectonic and plate tectonic units at the north Gondwana margin: evidence from the Central European Variscides. Abhandlungen der Geologischen Bundesanstalt 54, 713.Google Scholar
Franke, W. 2000. The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In Orogenic Processes: Quantification and Modelling in the Variscan Belt (eds Franke, W., Haak, V., Oncken, O. & Tanner, D.), pp. 3561. Geological Society, London, Special Publication no. 179.Google Scholar
Franke, W. 2006. The Variscan orogen in Central Europe: construction and collapse. In European Litosphere Dynamics (eds by Gee, D. G. & Stephenson, R. A.), pp. 333–43. Geological Society, London, Memoir no. 32.Google Scholar
Franke, W. 2012. Comment on Dörr and Zulauf: elevator tectonics and orogenic collapse of a Tibetan-style plateau in the European Variscides: the role of the Bohemian shear zone. Int J Earth Sci (Geol Rundsch) (2010) 99: 299–325. International Journal of Earth Sciences 101, 2027–34.CrossRefGoogle Scholar
Franke, W. 2014. Topography of the Variscan orogen in Europe: failed – not collapsed. International Journal of Earth Sciences 103, 1471–99.CrossRefGoogle Scholar
Franke, W., Doublier, M. P., Klama, K., Potel, S. & Wemmer, K. 2011. Hot metamorphic core complex in a cold foreland. International Journal of Earth Sciences 100, 753–85.CrossRefGoogle Scholar
Geisler, T. & Tomaschek, F. 2007. Re-equilibration of zircon in aqueous fluids and melts. Elements 3, 4350.CrossRefGoogle Scholar
Gerdes, A., Wörner, G. & Finger, F. 2000. Hybrids, magma mixing and enriched mantle melts in post-collisional Variscan granitoids: the Rastenberg Pluton, Austria. In Orogenic Processes: Quantification and Modelling in the Variscan Belt (eds Franke, W., Haak, V., Oncken, O. & Tanner, D.), pp. 415–31. Geological Society, London, Special Publication no. 179.Google Scholar
Giacomini, F., Dallai, L., Carminati, E., Tiepolo, M. & Ghezzo, C. 2008. Exhumation of a Variscan orogenic complex: insights into the composite granulitic–amphibolitic metamorphic basement of south-east Corsica (France). Journal of Metamorphic Geology 26, 403–36.CrossRefGoogle Scholar
Henk, A., von Blanckenburg, F., Finger, F., Schaltegger, U. & Zulauf, G. 2000. Syn-convergent high-temperature metamorphism and magmatism in the Variscides: a discussion of potential heat sources. In: Orogenic Processes: Quantification and Modelling in the Variscan Belt (eds Franke, W., Haak, V., Oncken, O. & Tanner, D.), pp. 387–99. Geological Society, London, Special Publication no. 179.Google Scholar
Henry, B. 1997. The magnetic zone axis: a new element of magnetic fabric for the interpretation of the magnetic lineation. Tectonophysics 271, 325–31.CrossRefGoogle Scholar
Holub, F. V. 1997. Ultrapotassic plutonic rocks of the durbachite series in the Bohemian Massif: petrology, geochemistry, and petrogenetic interpretation. Journal of Geological Sciences, Economic Geology, Mineralogy 31, 526.Google Scholar
Holub, F. V., Cocherie, A. & Rossi, P. 1997. Radiometric dating of granitic rocks from the Central Bohemian Plutonic Complex: constraints on the chronology of thermal and tectonic events along the Barrandian–Moldanubian boundary. Comptes Rendus de L'Academie des Sciences - Series IIA - Earth and Planetary Science 325, 1926.Google Scholar
Holub, F. V., Verner, K. & Schmitz, M. D. 2011. Temporal relations of melagranite porphyry dykes and durbachitic plutons in South Bohemia. Geoscience Research Reports 2011, 23–5.Google Scholar
Hrouda, F. 1982. Magnetic anisotropy of rocks and its application in geology and geophysics. Geophysical Surveys 5, 3782.CrossRefGoogle Scholar
Hrouda, F. 1994. A technique for the measurement of thermal changes of magnetic susceptibility of weakly magnetic rocks by the CS-2 apparatus and KLY-2 Kappabridge. Geophysical Journal International 118, 604–12.CrossRefGoogle Scholar
Hrouda, F. & Kahan, Š. 1991. The magnetic fabric relationship between sedimentary and basement nappes in the High Tatra Mountains, N. Slovakia. Journal of Structural Geology 13, 431–42.CrossRefGoogle Scholar
Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology 211, 4769.CrossRefGoogle Scholar
Jamieson, R. A. & Beaumont, C. 2013. On the origin of orogens. Geological Society of America Bulletin 125, 1671–702.CrossRefGoogle Scholar
Janoušek, V. & Gerdes, A. 2003. Timing the magmatic activity within the Central Bohemian Pluton, Czech Republic: conventional U–Pb ages for the Sázava and Tábor intrusions and their geotectonic significance. Journal of the Czech Geological Society 48, 70–1.Google Scholar
Janoušek, V. & Holub, F. 2007. The causal link between HP–HT metamorphism and ultrapotassic magmatism in collisional orogens: case study from the Moldanubian Zone of the Bohemian Massif. Proceedings of the Geologists’ Association 118, 7586.CrossRefGoogle Scholar
Jelínek, V. 1978. Statistical processing of anisotropy of magnetic susceptibility measured on groups of specimens. Studia Geophysica et Geodetica 22, 5062.CrossRefGoogle Scholar
Jelínek, V. 1981. Characterization of the magnetic fabric of rocks. Tectonophysics 79, T63–7.CrossRefGoogle Scholar
Kachlík, V. & Patočka, F. 1998. Cambrian/Ordovician intracontinental rifting and Devonian closure of the rifting generated basins in the Bohemian Massif realms. Acta Universitatis Carolinae, Geologica 42, 433–41.Google Scholar
Klomínský, J., Jarchovský, T. & Rajpoot, G. S. 2010. Atlas of plutonic rocks and orthogneisses in the Bohemian Massif. 2. Moldanubicum. Prague: Czech Geological Survey, 199 pp.Google Scholar
Konopásek, J., Pilátová, E., Košler, J. & Sláma, J. 2014. Zircon (re)crystallization during short-lived, high-P granulite facies metamorphism (Eger Complex, NW Bohemian Massif). Journal of Metamorphic Geology 32, 885902.CrossRefGoogle Scholar
Košler, J., Rogers, G., Roddick, J. C. & Bowes, D. R. 1995. Temporal association of ductile deformation and granitic plutonism: Rb–Sr and 40Ar–39Ar evidence from roof pendants above the Central Bohemian Pluton, Czech Republic. Journal of Geology 103, 711–7.CrossRefGoogle Scholar
Kotková, J. 2007. High-pressure granulites of the Bohemian Massif: recent advances and open questions. Journal of Geosciences 52, 4571.Google Scholar
Kotková, J., Dörr, W. & Finger, F. 1998. New geochemical and geochronological data on the very-high-pressure garnetite from the Podolsko Complex, Moldanubian Zone, Bohemian Massif. Acta Universitatis Carolinae, Geologica 42, 281–2.Google Scholar
Kotková, J., Harley, S. L. & Fišera, M. 1997. A vestige of very high-pressure (ca. 28 kbar) metamorphism in the Variscan Bohemian Massif, Czech Republic. European Journal of Mineralogy 9, 1017–33.CrossRefGoogle Scholar
Kotková, J., Kröner, A., Todt, W. & Fiala, J. 1995. Zircon dating of North Bohemian granulites, Czech Republic: further evidence for the Lower Carboniferous high-pressure event in the Bohemian Massif. Geologische Rundschau 85, 154–61.CrossRefGoogle Scholar
Kotková, J., Schaltegger, U. & Leichmann, J. 2010. Two types of ultrapotassic plutonic rocks in the Bohemian Massif – coeval intrusions at different crustal levels. Lithos 115, 163–76.CrossRefGoogle Scholar
Krenn, E. & Finger, F. 2004. Metamorphic formation of Sr-apatite and Sr-bearing monazite in a high-pressure rock from the Bohemian Massif. American Mineralogist 89, 1323–9.CrossRefGoogle Scholar
Kröner, A., Jaeckel, P., Reischmann, T. & Kroner, U. 1998. Further evidence for an early Carboniferous (~340 Ma) age of high-grade metamorphism in the Saxonian granulite complex. Geologische Rundschau 86, 751–66.CrossRefGoogle Scholar
Kröner, A., O'Brien, P. J., Nemchin, A. A. & Pidgeon, R. T. 2000. Zircon ages for high pressure granulites from South Bohemia, Czech Republic, and their connection to Carboniferous high temperature processes. Contributions to Mineralogy and Petrology 138, 127–42.Google Scholar
Kroner, U. & Romer, R. L. 2013. Two plates – many subduction zones: the Variscan orogeny reconsidered. Gondwana Research 24, 298329.CrossRefGoogle Scholar
Kruckenberg, S. C., Ferré, E. C., Teyssier, C., Vanderhaeghe, O., Whitney, D. L., Seaton, N. C. A. & Skord, J. A. 2010. Viscoplastic flow in migmatites deduced from fabric anisotropy: an example from the Naxos dome, Greece. Journal of Geophysical Research 115, B09401.CrossRefGoogle Scholar
Kruckenberg, S. C., Vanderhaeghe, O., Ferré, E. C., Teyssier, C. & Whitney, D. L. 2011. Flow of partially molten crust and the internal dynamics of a migmatite dome, Naxos, Greece. Tectonics 30, TC3001.CrossRefGoogle Scholar
Kusiak, M. A., Dunkley, D. J., Suzuki, K., Kachlík, V., Kedzior, A., Lekki, J. & Opluštil, S. 2010. Chemical (non-isotopic) and isotopic dating of Phanerozoic zircon – a case study of durbachite from the Třebíč Pluton, Bohemian Massif. Gondwana Research 17, 153–61.CrossRefGoogle Scholar
Lardeaux, J. M., Schulmann, K., Faure, M., Janoušek, V., Lexa, O., Skrzypek, E., Edel, J. B. & Štípská, P. 2014. The Moldanubian Zone in the French Massif Central, Vosges/Schwarzwald and Bohemian Massif revisited: differences and similarities. In The Variscan Orogeny: Extent, Timescale and the Formation of the European Crust (eds Schulmann, K., Martínez Catalán, J. R., Lardeaux, J. M., Janoušek, V. & Oggiano, G.), pp. 744. Geological Society, London, Special Publication no. 405.Google Scholar
Lexa, O., Schulmann, K., Janoušek, V., Štípská, P., Guy, A. & Racek, M. 2011. Heat sources and trigger mechanisms of exhumation of HP granulites in Variscan orogenic root. Journal of Metamorphic Geology 29, 79102.CrossRefGoogle Scholar
Linner, M. 1996. Metamorphism and partial melting of paragneisses of the Monotonous Group, SE Moldanubicum (Austria). Mineralogy and Petrology 58, 215–34.CrossRefGoogle Scholar
Liou, J. G., Tsujimori, T., Yang, J., Zhang, R. Y. & Ernst, W. G. 2014. Recycling of crustal materials through study of ultrahigh–pressure minerals in collisional orogens, ophiolites, and mantle xenoliths: a review. Journal of Asian Earth Sciences 96, 386420.CrossRefGoogle Scholar
Lobkowicz, M., Štědrá, V. & Schulmann, K. 1996. Late-Variscan extensional collapse of the thickened Moldanubian crust in the southern Bohemia. Journal of the Czech Geological Society 41, 123–38.Google Scholar
Ludwig, K. R. 2008. Isoplot 3.70. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication no. 4.Google Scholar
Martínez Catalán, J. R. 2011. Are the oroclines of the Variscan belt related to late Variscan strike-slip tectonics? Terra Nova 23, 241–7.CrossRefGoogle Scholar
Martínez Catalán, J. R. 2012. The Central Iberian arc, an orocline centered in the Iberian Massif and some implications for the Variscan belt. International Journal of Earth Sciences 101, 1299–314.CrossRefGoogle Scholar
Massonne, H. J. 2006. Early metamorphic evolution and exhumation of felsic high-pressure granulites from the north-western Bohemian Massif. Mineralogy and Petrology 86, 177202.CrossRefGoogle Scholar
Matte, P. 2001. The Variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: a review. Terra Nova 13, 122–8.CrossRefGoogle Scholar
Matte, P., Maluski, H., Rajlich, P. & Franke, W. 1990. Terrane boundaries in the Bohemian Massif: result of large-scale Variscan shearing. Tectonophysics 177, 151–70.CrossRefGoogle Scholar
Medaris, L. G., Beard, B. L. & Jelínek, E. 2006. Mantle-derived, UHP garnet pyroxenite and eclogite in the Moldanubian Gföhl nappe, Bohemian Massif: a geochemical review, new P–T determinations, and tectonic interpretation. International Geology Review 48, 765–77.CrossRefGoogle Scholar
Medaris, G., Beard, B. L., Johnson, C. M., Valley, J. W., Spicuzza, M. J., Jelínek, E. & Mísař, Z. 1995. Garnet pyroxenite and eclogite in the Bohemian Massif: geochemical evidence for Variscan recycling of subducted lithosphere. Geologische Rundschau 84, 489505.CrossRefGoogle Scholar
Medaris, G., Wang, H., Jelínek, E., Mihaljevič, M. & Jakeš, P. 2005. Characteristics and origins of diverse Variscan peridotites in the Gföhl Nappe, Bohemian Massif, Czech Republic. Lithos 82, 123.CrossRefGoogle Scholar
Mezger, K. & Krogstad, E. J. 1997. Interpretation of discordant U–Pb zircon ages: an evaluation. Journal of Metamorphic Geology 15, 127–40.CrossRefGoogle Scholar
Murphy, D. C. 1987. Suprastructure/infrastructure transition, east central Cariboo Mountains, British Columbia: geometry, kinematics and tectonic implications. Journal of Structural Geology 9, 1329.CrossRefGoogle Scholar
Nance, R. D., Gutierréz-Alonso, G., Keppie, J. D., Linnemann, U., Murphy, J. B., Quesada, C., Strachan, R. A. & Woodcock, N. H. 2010. Evolution of the Rheic Ocean. Gondwana Research 17, 194222.CrossRefGoogle Scholar
O'Brien, P. J. & Carswell, D. A. 1993. Tectonometamorphic evolution of the Bohemian Massif: evidence from high pressure metamorphic rocks. Geologische Rundschau 82, 531–55.CrossRefGoogle Scholar
Owen, J. V. & Dostal, J. 1996. Prograde metamorphism and decompression of the Gföhl gneiss, Czech Republic. Lithos 38, 259–70.CrossRefGoogle Scholar
Paton, C., Woodhead, J. D., Hellstrom, J. C., Hergt, J. M., Greig, A. & Maas, R. 2010. Improved laser ablation U–Pb zircon geochronology through robust downhole fractionation correction. Geochemistry Geophysics Geosystems 11, Q0AA06.CrossRefGoogle Scholar
Petrakakis, K. 1997. Evolution of Moldanubian rocks in Austria: review and synthesis. Journal of Metamorphic Geology 15, 203–22.CrossRefGoogle Scholar
Petrus, J. A. & Kamber, B. S. 2012. VizualAge: a novel approach to laser ablation ICP-MS U–Pb geochronology data reduction. Geostandards and Geoanalytical Research 36, 247–70.CrossRefGoogle Scholar
Pharaoh, T. C. 1999. Palaeozoic terranes and their lithospheric boundaries within the Trans-European Suture Zone (TESZ): a review. Tectonophysics 314, 1741.CrossRefGoogle Scholar
Pin, C., Kryza, R., Oberc-Dziedzic, T., Mazur, S., Turniak, K. & Waldhausrová, J. 2007. The diversity and geodynamic significance of Late Cambrian (ca. 500 Ma) felsic anorogenic magmatism in the northern part of the Bohemian Massif: a review based on Sm–Nd isotope and geochemical data. In The Evolution of the Rheic Ocean: From Avalonian–Cadomian Active Margin to Alleghenian–Variscan Collision (eds Linnemann, U., Nance, R. D., Kraft, P. & Zulauf, G.), pp. 209–29. Geological Society of America, Special Paper no. 423.Google Scholar
Pitra, P., Burg, J. P. & Guiraud, M. 1999. Late Variscan strike-slip tectonics between the Teplá–Barrandian and Moldanubian terranes (Czech Bohemian Massif): petrostructural evidence. Journal of the Geological Society , London 156, 1003–20.CrossRefGoogle Scholar
Pitra, P., Burg, J. P., Schulmann, K. & Ledru, K. 1994. Late orogenic extension in the Bohemian Massif: petrostructural evidence in the Hlinsko region. Geodynamica Acta 7, 1530.CrossRefGoogle Scholar
Platt, J. P., Behr, W. M. & Cooper, F. J. 2014. Metamorphic core complexes: windows into the mechanics and rheology of the crust. Journal of the Geological Society , London 172, 927.CrossRefGoogle Scholar
Platt, J. P., Whitehouse, M. J., Kelley, S. P., Carter, A. & Hollick, L. 2003. Simultaneous extensional exhumation across the Alboran Basin: implications for the causes of late orogenic extension. Geology 31, 251–4.2.0.CO;2>CrossRefGoogle Scholar
René, M. 2006. Provenance studies of Moldanubian paragneisses based on geochemical data (Bohemian Massif, Czech Republic). Neues Jahrbuch für Geologie and Paläntologie, Abhandlungen 242, 83101.CrossRefGoogle Scholar
Rey, P. F., Teyssier, C., Kruckenberg, S. C. & Whitney, D. L. 2011. Viscous collision in channel explains double domes in metamorphic core complexes. Geology 39, 387–90.CrossRefGoogle Scholar
Rey, P. F., Teyssier, C. & Whitney, D. L. 2009 a. Extension rates, crustal melting, and core complex dynamics. Geology 37, 391–4.CrossRefGoogle Scholar
Rey, P. F., Teyssier, C. & Whitney, D. L. 2009 b. The role of partial melting and extensional strain rates in the development of metamorphic core complexes. Tectonophysics 477, 134–44.CrossRefGoogle Scholar
Rey, P. F., Teyssier, C. & Whitney, D. L. 2010. Limit of channel flow in orogenic plateaux. Lithosphere 2, 328–32.CrossRefGoogle Scholar
Rey, P. F., Vanderhaeghe, O. & Teyssier, C. 2001. Gravitational collapse of the continental crust: definition, regimes and modes. Tectonophysics 342, 435–49.CrossRefGoogle Scholar
Rivers, T. 2012. Upper-crustal orogenic lid and mid-crustal core complexes: signature of a collapsed orogenic plateau in the hinterland of the Grenville Province. Canadian Journal of Earth Sciences 49, 142.CrossRefGoogle Scholar
Roberts, M. P. & Finger, F. 1997. Do U–Pb zircon ages from granulites reflect peak metamorphic conditions? Geology 25, 319–22.2.3.CO;2>CrossRefGoogle Scholar
Rochette, P., Jackson, M. & Aubourg, C. 1992. Rock magnetism and the interpretation of anisotropy of magnetic susceptibility. Reviews of Geophysics 30, 209–26.CrossRefGoogle Scholar
Roger, F., Teyssier, C., Respaut, J. P., Rey, P. F., Jolivet, M., Whitney, D. L., Paquette, J. L. & Brunel, M. 2015. Timing of formation and exhumation of the Montagne Noire double dome, French Massif Central. Tectonophysics 640–641, 5369.CrossRefGoogle Scholar
Röhlichová, M. 1962. On enclaves and blocks in the Podolsko complex in the eastern vicinity of Písek. Journal for Mineralogy and Geology 3, 301–6.Google Scholar
Röhlichová, M. 1963. Migmatites of the Podolsko complex in the Písek area. Acta Universitatis Carolinae, Geologica 3, 197210.Google Scholar
Romer, R. L. & Rötzler, J. 2001. P–T–t evolution of ultrahigh-temperature granulites from the Saxon Granulite Massif, Germany. Part II: geochronology. Journal of Petrology 42, 2015–32.CrossRefGoogle Scholar
Rubatto, D., Ferrando, S., Compagnoni, R. & Lombardo, B. 2010. Carboniferous high-pressure metamorphism of Ordovician protoliths in the Argentera Massif (Italy), Southern European Variscan belt. Lithos 116, 6576.CrossRefGoogle Scholar
Schaltegger, U. 1997. Magma pulses in the Central Variscan Belt: episodic melt generation and emplacement during litospheric thinning. Terra Nova 9, 242–5.CrossRefGoogle Scholar
Schaltegger, U., Schneider, J. L., Maurin, J. C. & Corfu, F. 1996. Precise U–Pb chronometry of 345–340 Ma old magmatism related to syn-convergence extension in the Southern Vosges (Central Variscan Belt). Earth and Planetary Science Letters 144, 403–19.CrossRefGoogle Scholar
Scheuvens, D. & Zulauf, G. 2000. Exhumation, strain localization, and emplacement of granitoids along the western part of the Central Bohemian shear zone (Bohemian Massif). International Journal of Earth Sciences 89, 617–30.CrossRefGoogle Scholar
Schoene, B. 2014. U–Th–Pb geochronology. In Treatise on Geochemistry (2nd Edition) (eds Holland, H. & Turejian, K.), pp. 341–78. Amsterdam: Elsevier.CrossRefGoogle Scholar
Schulmann, K., Edel, J. B., Hasalová, P., Cosgrove, J. W., Ježek, J. & Lexa, O. 2009 a. Influence of melt induced mechanical anisotropy on the magnetic fabrics and rheology of deforming migmatites, Central Vosges, France. Journal of Structural Geology 31, 1223–37.CrossRefGoogle Scholar
Schulmann, K., Konopásek, J., Janoušek, V., Lexa, O., Lardeaux, J. M., Edel, J. B., Štípská, P. & Ulrich, S. 2009 b. An Andean type Palaeozoic convergence in the Bohemian Massif. Comptes Rendus Geoscience 341, 266–86.CrossRefGoogle Scholar
Schulmann, K., Lexa, O., Janoušek, V., Lardeaux, J. M. & Edel, J. B. 2014. Anatomy of a diffuse cryptic suture zone: an example from the Bohemian Massif, European Variscides. Geology 42, 275–8.CrossRefGoogle Scholar
Skrzypek, E., Schulmann, K., Tabaud, A. S. & Edel, J. B. 2014. Palaeozoic evolution of the Variscan Vosges Mountains. In The Variscan Orogeny: Extent, Timescale and the Formation of the European Crust (eds Schulmann, K., Martínez Catalán, J. R., Lardeaux, J. M., Janoušek, V. & Oggiano, G.), pp. 4575. Geological Society, London, Special Publication no. 405.Google Scholar
Skrzypek, E., Štípská, P. & Cocherie, A. 2012. The origin of zircon and the significance of U–Pb ages in high-grade metamorphic rocks: a case study from the Variscan orogenic root (Vosges Mountains, NE France). Contributions to Mineralogy and Petrology 164, 935–57.CrossRefGoogle Scholar
Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N. & Whitehouse, M. J. 2008. Plešovice zircon – a new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology 249, 135.CrossRefGoogle Scholar
Steltenpohl, M. G., Cymerman, Z., Krogh, E. J. & Kunk, M. J. 1993. Exhumation of eclogitized continental basement during Variscan lithospheric delamination and gravitational collapse, Sudety Mountains, Poland. Geology 21, 1111–4.2.3.CO;2>CrossRefGoogle Scholar
Tabaud, A. S., Janoušek, V., Skrzypek, E., Schulmann, K., Rossi, P., Whitechurch, H., Guerrot, C. & Paquette, J. L. 2014. Chronology, petrogenesis and heat sources for successive Carboniferous magmatic events in the Southern–Central Variscan Vosges Mts (NE France). Journal of the Geological Society , London 172, 87102.CrossRefGoogle Scholar
Tait, J., Schätz, M., Bachtadse, V. & Soffel, H. 2000. Palaeomagnetism and Palaeozoic palaeogeography of Gondwana and European terranes. In Orogenic Processes: Quantification and Modelling in the Variscan Belt (eds Franke, W., Haak, V., Oncken, O. & Tanner, D.), pp. 2134. Geological Society, London, Special Publication no. 179.Google Scholar
Tarling, D. H. & Hrouda, F. 1993. The Magnetic Anisotropy of Rocks. London: Chapman and Hall, 217 pp.Google Scholar
Tirel, C., Brun, J. P. & Burov, E. 2004. Thermomechanical modeling of extensional gneiss domes. In Gneiss Domes in Orogeny (eds Whitney, D. L., Teyssier, C. & Siddoway, C. S.), pp. 6778. Geological Society of America, Special Paper no. 380.Google Scholar
Tollmann, A. 1982. Large-scale nappe structure of the Moldanubian and new ideas on the European Variscides. Geotektonische Forschungen 64, 191.Google Scholar
Tomek, F., Žák, J. & Chadima, M. 2015. Granitic magma emplacement and deformation during early-orogenic syn-convergent transtension: the Staré Sedlo complex, Bohemian Massif. Journal of Geodynamics 87, 5066.CrossRefGoogle Scholar
Urban, K. 1930. Geology of an area near confluence of the Vltava and Otava Rivers. Bulletin of the State Geological Institute 9, 109–64.Google Scholar
Viegas, L. G. F., Archanjo, C. J. & Vauchez, A. 2013. Fabrics of migmatites and the relationships between partial melting and deformation in high-grade transpressional shear zones: the Espinho Branco anatexite (Borborema Province, NE Brazil). Journal of Structural Geology 48, 4556.CrossRefGoogle Scholar
von Raumer, J. F., Bussy, F., Schaltegger, U., Schulz, B. & Stampfli, G. M. 2013. Pre-Mesozoic Alpine basements – their place in the European Paleozoic framework. Geological Society of America Bulletin 125, 89108.CrossRefGoogle Scholar
von Raumer, J. F., Finger, F., Veselá, P. & Stampfli, G. M. 2014. Durbachites–vaugnerites – a geodynamic marker in the central European Variscan orogen. Terra Nova 26, 8595.CrossRefGoogle Scholar
Vrána, S. 1979. Polyphase shear folding and thrusting in the Moldanubicum of southern Bohemia. Bulletin of the Central Geological Survey 54, 7586.Google Scholar
Vrána, S. 1988. The Moldanubian zone in southern Bohemia: polyphase evolution of imbricated crustal and upper mantle segments. Proceedings of the 1st International Conference on the Bohemian Massif, Prague, pp. 331–6.Google Scholar
Whitney, D. L., Roger, F., Teyssier, C., Rey, P. F. & Respaut, J. P. 2015. Syn-collapse eclogite metamorphism and exhumation of deep crust in a migmatite dome: the P–T–t record of the youngest Variscan eclogite (Montagne Noire, French Massif Central). Earth and Planetary Science Letters 430, 224–34.CrossRefGoogle Scholar
Whitney, D. L., Teyssier, C., Rey, P. F. & Buck, R. W. 2013. Continental and oceanic core complexes. Geological Society of America Bulletin 125, 273–98.CrossRefGoogle Scholar
Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., von Quadt, A., Roddick, J. C. & Speigel, W. 1995. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace-element and REE analyses. Geostandards Newsletter 19, 123.CrossRefGoogle Scholar
Willner, A. P., Sebazungu, E., Gerya, T. V., Maresch, W. V. & Krohe, A. 2002. Numerical modelling of PT-paths related to rapid exhumation of high-pressure rocks from the crustal root in the Variscan Erzgebirge Dome (Saxony/Germany). Journal of Geodynamics 33, 281314.CrossRefGoogle Scholar
Winchester, J. A. 2002. Palaeozoic amalgamation of Central Europe: new results from recent geological and geophysical investigations. Tectonophysics 360, 521.CrossRefGoogle Scholar
Winchester, J. A., Pharaoh, T. C., Verniers, J., Ioane, D. & Seghedi, A. 2006. Palaeozoic accretion of Gondwana-derived terranes to the East European Craton: recognition of detached terrane fragments dispersed after collision with promontories. In European Litosphere Dynamics (eds by Gee, D. G. & Stephenson, R. A.), pp. 323–32. Geological Society, London, Memoir no. 32.Google Scholar
Žák, J., Holub, F. V. & Verner, K. 2005. Tectonic evolution of a continental magmatic arc from transpression in the upper crust to exhumation of mid-crustal orogenic root recorded by episodically emplaced plutons: the Central Bohemian Plutonic Complex (Bohemian Massif). International Journal of Earth Sciences 94, 385400.CrossRefGoogle Scholar
Žák, J., Kraft, P. & Hajná, J. 2013. Timing, styles, and kinematics of Cambro–Ordovician extension in the Teplá–Barrandian Unit, Bohemian Massif, and its bearing on the opening of the Rheic Ocean. International Journal of Earth Sciences 102, 415–33.CrossRefGoogle Scholar
Žák, J., Verner, K., Holub, F. V., Kabele, P., Chlupáčová, M. & Halodová, P. 2012. Magmatic to solid state fabrics in syntectonic granitoids recording early Carboniferous orogenic collapse in the Bohemian Massif. Journal of Structural Geology 36, 2742.CrossRefGoogle Scholar
Žák, J., Verner, K., Janoušek, V., Holub, F. V., Kachlík, V., Finger, F., Hajná, J., Tomek, F., Vondrovic, L. & Trubač, J. 2014. A plate-kinematic model for the assembly of the Bohemian Massif constrained by structural relationships around granitoid plutons. In The Variscan Orogeny: Extent, Timescale and the Formation of the European Crust (eds Schulmann, K., Martínez Catalán, J. R., Lardeaux, J. M., Janoušek, V. & Oggiano, G.), pp. 169–96. Geological Society, London, Special Publication no. 405.Google Scholar
Zelenka, L. 1927. Geology of the area between Týn n. Vlt. and Podolsko. Bulletin of the State Geological Institute 7, 479506.Google Scholar
Zulauf, G. 1994. Ductile normal faulting along the West Bohemian Shear Zone (Moldanubian/Teplá–Barrandian boundary): evidence for late Variscan extensional collapse in the Variscan Internides. Geologische Rundschau 83, 276–92.CrossRefGoogle Scholar
Zulauf, G., Bues, C., Dörr, W. & Vejnar, Z. 2002. 10 km minimum throw along the West Bohemian shear zone: evidence for dramatic crustal thickening and high topography in the Bohemian Massif (European Variscides). International Journal of Earth Sciences 91, 850–64.Google Scholar
Zulauf, G., Dörr, W., Fisher-Spurlock, S. C., Gerdes, A., Chatzaras, V. & Xypolias, P. 2015. Closure of the Paleotethys in the External Hellenides: constraints from U–Pb ages of magmatic and detrital zircons (Crete). Gondwana Research 28, 642–67.CrossRefGoogle Scholar
Zwart, H. J. 1967. The duality of orogenic belts. Geologie en Mijnbouw 46, 283309.Google Scholar
Supplementary material: PDF

Žak supplementary material S1

Žak supplementary material

Download Žak supplementary material S1(PDF)
PDF 223.8 KB