Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-09-12T22:20:14.175Z Has data issue: false hasContentIssue false

Sedimentation and volcanism linked to multiphase rifting in an Oligo-Miocene intra-arc basin, Anglona, Sardinia

Published online by Cambridge University Press:  01 July 2000

ALISON SOWERBUTTS
Affiliation:
Department of Geology & Geophysics, University of Edinburgh, West Mains Road, Edinburgh EH9 3JW, UK

Abstract

Three extensional phases can be recognized in the northern, Anglona area of the Oligo-Miocene Sardinian Rift during a fifteen million year period which spanned Corsica–Sardinia continental microplate separation and Western Mediterranean back-arc basin opening. In response to this multiphase rifting, a complex facies architecture involving clastic, carbonate and volcanic rocks developed. Integrated onshore facies and structural analysis, dating and offshore seismic data are here used to reconstruct the tectono-stratigraphic history of the Anglona area. Initial late Oligocene extension created a half-graben geometry with syn-rift clastic deposits shed locally from fault-bounded highs, passing laterally to lacustrine marlstones. Calc-alkaline volcanic activity subsequently predominated as volcanic centres developed along one half-graben bounding fault. Voluminous pyroclastic and epiclastic material was supplied to the adjacent half-graben accommodation space and was deposited in marginal to marine conditions. Second-phase mid-Aquitanian–early Burdigalian extensional faulting, recognized from localized clastic syn-rift stratal wedges, truncated and subdivided the half-graben. The syn-rift sediments were sealed by a regionally correlated ignimbrite that in turn was offset by late second-phase faulting. Third-phase extensional fault movement which reactivated the original fault trend then occurred. A perched lake developed in the resultant topography coeval with the progressive marine transgression of lower areas. As sea-level rose during mid-Burdigalian times, reefal carbonates and grainstones developed on fault-block highs whilst calcarenites and marlstones were deposited in hangingwall locations. Initial extension was coeval with the formation of the Sardinian proto-rift and the initiation of the Western Mediterranean basin. Second-phase faulting occurred as the Corsica–Sardinia microplate rotated to its present position during Western Mediterranean back-arc basin spreading. Final extension can be correlated to a second major extension phase along the Oligo-Miocene Sardinian Rift following back-arc basin opening, as extension was transferred towards the fore-arc. In Anglona, the main influence of multiphase tectonism was on rift topography, providing accommodation space and localized uplifted source areas. Varying relative sea-level mainly controlled the broad types of facies belts that developed. Contemporaneous calc-alkaline volcanism played a major role in the supply of basin filling material and in changing the topography locally.

Type
Research Article
Copyright
© 2000 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)