Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-14T13:04:00.498Z Has data issue: false hasContentIssue false

Vertical igneous layering in the Ewarara layered intrusion, central Australia

Published online by Cambridge University Press:  01 May 2009

A. D. T. Goode
Affiliation:
BHP Melbourne Research Laboratories, Wellington Road, Clayton, Victoria 3168, Australia

Summary

The Ewarara Intrusion of central Australia contains two vertical fine-banded horizons within a sequence of sub-horizontal ultramafic cumulates. The horizons are arranged in an en échelon pattern adjacent to a steep intrusional contact, and consist of an alternation of two layer types which correspond to the two major lithologies present in the horizontal sequence. The horizons are up to 5 m thick. A number of possible origins, including folding of originally horizontal cumulates, flow differentiation and multiple injection, do not satisfactorily explain the formation of the layering. The most likely origin appears to involve differential viscous flow along the steep contact of an inhomogeneous crystal mush derived from the horizontal layered sequence. This mobilization is related to fresh injections along a feeder zone trending 060µ, the only such zone recognized in the Giles Complex.

Type
Articles
Copyright
Copyright © Cambridge University Press 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alper, A. M. & Poldervaart, A. 1957. Zircons from the Animas stock and associated rocks, New Mexico. Econ. Geol. 52, 952–71.CrossRefGoogle Scholar
Baragar, W. R. 1960. Petrology of basaltic rocks in part of the Labrador Trough. Bull. geol. Soc. Am. 71,15891644.CrossRefGoogle Scholar
Barriere, M. 1976. Flowage differentiation: limitation of the ‘Bagnold Effect’to the narrow intrusions. Contr. Mineral. Petrol. 55, 139–45.CrossRefGoogle Scholar
Bhattacharji, S. 1964. Fluid-mechanics model for the mechanics of differentiation of basaltic magma during flowage. Spec. Pap. geol. Soc. Am. 76, 1415.Google Scholar
Bhattacharji, S. 1966. Experimental scale model studies on flowage differentiation in sills. Spec. Pap. geol. Soc. Am. 87, 1112.Google Scholar
Bhattacharji, S. 1967. Mechanics of flow differentiation in ultramafic and mafic sills. J. Geol. 75, 101–12.CrossRefGoogle Scholar
Bhattacharji, S. & Nehru, C. E. 1970. Igneous structures and mechanism of emplacement of Mount Johnson, a Monteregian intrusion, Quebec: Discussion. Can. J. Earth Sci. 7, 191–4.CrossRefGoogle Scholar
Bhattacharji, S. & Smith, C. H. 1964. Flowage differentiation. Science, 145, 150–3.CrossRefGoogle ScholarPubMed
Brandt, A. & Bugliarello, G. 1965. Concentration redistribution phenomena in the shear flow of monolayers of suspended particles. 36th Soc. Rheol. meeting, Cleveland.Google Scholar
Bridgwater, D. 1968. Mechanics of flow differentiation in ultramafic and mafic sills: a discussion. J. Geol. 76, 596–9.CrossRefGoogle Scholar
Busse, W. F. 1962. Two decades of high polymer physics. Physics Today, 17, 3241.CrossRefGoogle Scholar
Chaffey, C. E., Brenner, H. & Mason, S. G. 1965. Particle motions in sheared suspensions: XVII. Deformation and migration of liquid drops. Rheol. Acta, 4, 5663.CrossRefGoogle Scholar
Drever, H. I. & Johnson, R. 1958. The petrology of picritic rocks in minor intrusions — a Hebridean group. Trans. R. Soc. Edinb. 63, 459–99.CrossRefGoogle Scholar
Frarey, M. J. 1967. Willbob Lake and Thompson Lake map-areas, Quebec and Newfoundland. Mem. geol. Surv. Can. 348.Google Scholar
Gass, I. G. & Masson-Smith, D. 1963. The geology and gravity anomalies of the Troodos massif, Cyprus. Phil. Trans. R. Soc. Lond.A, 255, 417–67.Google Scholar
Gibb, F. G. F. 1968. Flow differentiation in the xenolithic ultrabasic dykes of the Cuillins and the Strathaird Peninsula, Isle of Skye, Scotland. J. Petrology, 9, 411–43.CrossRefGoogle Scholar
Goldsmith, H. L. & Mason, S. G. 1961. Axial migration of particles in Poiseuille flow. Nature, Lond. 190,1095–6.CrossRefGoogle Scholar
Goldsmith, H. L. & Mason, S. G. 1962. The flow of suspensions through tubes. 1. Single spheres, rods and discs. J. Colloid Sci. 17, 448–76.CrossRefGoogle Scholar
Goode, A. D. T. 1975. A transgressive picrite suite from the western Musgrave Block, central Autralia. J. geol. Soc. Aust. 22, 187–94.CrossRefGoogle Scholar
Goode, A. D. T. & Krieg, G. W. 1967. The geology of Ewarara Intrusion, Giles Complex, central Australia. J. geol. Soc. Aust. 14, 185–94.CrossRefGoogle Scholar
Goode, A. D. T. & Moore, A. C. 1975. High pressure crystallization of the Ewarara, Kalka and Gosse Pile Intrusions, Giles Complex, central Australia. Contr. Miner. Petrol. 51, 7797.CrossRefGoogle Scholar
Gotoh, K. 1970. Migration of a neutrally buoyant particle in Poiseuille flow: a possible explanation. Nature, Lond. 225, 848–50.CrossRefGoogle ScholarPubMed
Jeffrey, R. C. & Pearson, J. R. A. 1965. Particle motion in laminar vertical tube flow. J. Fluid Mech. 22,721–35.CrossRefGoogle Scholar
Karnis, A., Goldsmith, H. L. & Mason, S. G. 1963. Axial migration of particles in Poiseuille flow. Nature, Lond. 200, 159–60.CrossRefGoogle Scholar
Kazaryan, A. G. & Ananyan, E. V. 1967. Banding in dykes of diabase porphyry. Proc. Acad. Sci. USSR, 169, 167–70.Google Scholar
Komar, P. D. 1972 a. Mechanical interactions of phenocrysts and flow differentiation in igneous dykes and sills. Bull. geol. Soc. Am. 83, 973–88.CrossRefGoogle Scholar
Komar, P. D. 1972 b. Flow differentiation in igneous dykes and sills: profiles of velocity and phenocryst concentration. Bull. geol. Soc. Am. 83, 3443–8.CrossRefGoogle Scholar
Komar, P. D. 1976. Phenocryst interactions and the velocity profile of magma flowing through dykes or sills. Bull. geol. Soc. Am. 87, 1336–42.2.0.CO;2>CrossRefGoogle Scholar
Maude, A. D. & Whitmore, R. L. 1956. The wall effect and the viscometry of suspensions. Br. J. appl. Phys. 7, 98102.CrossRefGoogle Scholar
Maude, A. D. & Yearn, J. A. 1967. Particle migrations in suspension flows. J. Fluid Mech. 30, 601–21.CrossRefGoogle Scholar
Mikheyenko, V. I. 1968. Mode of origin of the banded flow texture in kimberlite. DokI. Akad. Nauk. SSSR, 179, 145–8.Google Scholar
Nesbitt, R. W., Goode, A. D. T., Moore, A. C. & Hopwood, T. P. 1970. The Giles Complex, central Australia: a stratified sequence of mafic and ultramafic intrusions. Spec. PubI. geol. Soc. S. Afr. 1,547–64.Google Scholar
Oldroyd, J. G. 1956. Non-Newtonian flow of liquids and solids.In Rheology, vol. 1 (ed. Eirich, F. R.). Academic Press.Google Scholar
Oliver, D. R. 1962. Influence of particle rotation on radial migration in the Poiseuille flow of suspensions. Nature, Lond. 194, 1269–71.CrossRefGoogle Scholar
Pao, R. 1961. Fluid Mechanics. John Wiley & Sons, Inc., New York.Google Scholar
Philpotts, A. R. 1968. Igneous structures and mechanism of emplacement of Mount Johnson, a Monteregian intrusion, Quebec. Can. I. Earth Sci. 5, 1131–7.CrossRefGoogle Scholar
Philpotts, A. R. 1970. Igneous structures and mechanism of emplacement of Mount Johnson, a Monteregian intrusion, Quebec: Reply. Can. J. Earth Sci. 7, 195–7.CrossRefGoogle Scholar
Poole, J. B. & Doyle, D. 1966. Solid—Liquid Separation. H.M.S.O., London.Google Scholar
Schrieber, H. P. & Storey, S. H. 1965. Molecular fractionation in capillary flow of polymer fluids. Polymer Letters, 3, 723–7.CrossRefGoogle Scholar
Segre, G. & Silberberg, A. 1961. Radial particle displacements in Poiseuille flow of suspensions. Nature, Lond. 189, 209–10.CrossRefGoogle Scholar
Segre, G. & Silberberg, A. 1962. Behaviour of macroscopic rigid spheres in Poiseuille flow. J. Fluid Mech. 14, 115–57.CrossRefGoogle Scholar
Simkin, T. 1967. Flow differentiation in the picritic sills of North Skye. In Ultramafic and Related Rocks (ed. Wyllie, P. J.). John Wiley & Sons, Inc., New York.Google Scholar
Smith, C. H. & Kapp, H. E. 1963. The Muskox intrusion, a recently discovered layered intrusion in the Coppermine River area, Northwest Territories, Canada. Spec. Pap. Miner. Soc. Amer. 1, 30–5.Google Scholar
Smith, T. E. 1975. Layered granitic rocks at Chebucto Head, Halifax County, Nova Scotia. Can. J. Earth Sci. 12, 456–63.CrossRefGoogle Scholar
Starkey, T. V. 1956. The laminar flow of streams of suspended particles. Br. I. appl. Phys. 7, 52–5.CrossRefGoogle Scholar
Thomson, B. P. 1964. Geological Atlas of South Australia, Sheet Davies, 1:63,360 series. Geol. Surv. S. Aust.Google Scholar
Vand, V. 1948. Viscosity of solutions and suspensions. J. phys. Colloid Chem. 52, 277314.CrossRefGoogle ScholarPubMed
Vejlens, G. 1938. The distribution of leucocytes in the vascular system. Acta path. microbiol. scan. Suppl. 33.Google Scholar
Wilshire, H. G. 1961. Layered diatremes near Sydney, N.S.W. J. Geol. 69, 473–84.CrossRefGoogle Scholar
Wright, J. B. 1966. Olivine nodules in a phonolite of the East Otago Alkaline Province, New Zealand. Nature, Lond. 210, 519.CrossRefGoogle Scholar
Wright, T. L., Kinoshita, W. T. & Peck, D. L. 1968. March 1965 eruption of Kilauea Volcano and the formation of Makaopuhi Lava Lake. J. geophys. Res. 73, 3181–205.CrossRefGoogle Scholar