Hostname: page-component-84b7d79bbc-7nlkj Total loading time: 0 Render date: 2024-07-26T02:46:11.891Z Has data issue: false hasContentIssue false

Almandine garnet phenocrysts in a ~1 Ga rhyolitic tuff from central India

Published online by Cambridge University Press:  13 June 2008

SARBANI PATRANABIS-DEB
Affiliation:
Indian Statistical Institute, Kolkata 700108, India
JUERGEN SCHIEBER
Affiliation:
Department of Geological Sciences, Indiana University, Bloomington, IN 47405, USA
ABHIJIT BASU*
Affiliation:
Department of Geological Sciences, Indiana University, Bloomington, IN 47405, USA
*
Author for correspondence: basu@indiana.edu

Abstract

We report on the newly discovered almandine garnet phenocrysts in rhyolitic ignimbrites (Sukhda Tuff) in the Precambrian Churtela Shale Formation of the Chhattisgarh Supergroup in central India. SHRIMP ages of igneous zircon from the ignimbrites range from 990 Ma to 1020 Ma. These ignimbrites exhibit characteristic eutaxitic texture with compacted curvilinear glass shards with triple junctions. Quartz (commonly embayed; bluish cathodoluminescence) and albite (altered but retaining ghosts of twinning) are common phenocrysts; others are apatite, ilmenite, rutile, magnetite, zircon, monazite and garnet. There are no metamorphic or granitic xenoliths in the ignimbrites. Garnet grains occur as isolated broken isotropic crystals with sharp or corroded boundaries in a very fine-grained groundmass of volcanic ash that consists principally of albite, quartz, magnetite and glass. They do not have any systematically distributed inclusions. A few have penetratively intergrown phenocrysts of apatite, ilmenite, rutile and zircon, which we interpret as subophitic texture. Extensive SEM-BSE imaging of more than 100 grains and electron microprobe traverses across about 30 grains showed no zoning or systematic compositional variability. Common (metamorphic) garnets are usually zoned with respect to Fe–Mg–Mn and typically have mineral inclusions. We infer, therefore, that these observed garnets are not metamorphic xenocrysts. The average major oxide composition of analysed garnets from five different horizons within the Sukhda Tuff, spanning approximately 300 m of the stratigraphic section, have very small standard deviation for each element, which is suggestive of a single magmatic source. Phenocrysts of quartz, including those in contact with coexisting garnets, show blue scanning electron CL, indicating rapid cooling from high temperature; this suggests that adjacent coexisting garnets are not slowly cooled restites. We conclude, on the basis of texture, mineral chemistry and absence of any indicative xenoliths or xenocrysts, that these almandine garnets (Al78.7Py12.3Gr7.4Sp1.6) are phenocrysts within the Sukhda Tuff. Almandine of such composition is stable under high pressure. We infer that almandine crystallized at lower crustal depths in a magma that ascended very rapidly and may have erupted explosively.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, B. D. & Clarke, D. B. 1981. Occurrence and origin of garnets in the South Mountain Batholith. Nova Scotia. Canadian Mineralogist 19, 1924.Google Scholar
Auden, J. B. 1933. Vindhyan sedimentation in the Son Valley, Mirzapur District. Memoir Geological Survey of India 62, 141250.Google Scholar
Aydar, E. & Gourgaud, A. 2002. Garnet-bearing basalts: an example from Mt. Hasan, central Anatolia, Turkey. Mineralogy and Petrology 75, 185201.CrossRefGoogle Scholar
Azmi, R. J., Joshi, D., Tiwari, B. N., Joshi, M. N., Mohan, K. & Srivastava, S. S. 2006. Age of the Vindhyan Supergroup of Central India: An exposition of biochronology vs. radiochronology. In Micropaleontology: Application in Stratigraphy and Paleoceanography (ed. Sinha, D.), pp. 2962. New Delhi: Narosa Publishing House.Google Scholar
Bacon, C. R. & Duffield, W. A. 1981. Late Cenozoic rhyolites from the Kern plateau, southern Sierra Nevada, California. American Journal of Science 281, 134.CrossRefGoogle Scholar
Barley, M. E. 1987. Origin and evolution of Mid-Cretaceous, garnet-bearing, intermediate and silicic volcanics from Canterbury, New Zealand. Journal of Volcanology and Geothermal Research 32, 247–67.CrossRefGoogle Scholar
Barnes, C. G. & Allen, C. M. 2006. Depth of origin of late Middle Jurassic garnet andesite, southern Klamath Mountains, California. In Geological Studies in the Klamath Mountains Province, California and Oregon (eds Snoke, A. W. & Barnes, C. G.), pp. 269–86. Geological Society of America, Special Paper no. 410. Boulder.Google Scholar
Basu, A. 2007. Immense research potential of newly dated (>900 Ma) Purana sediments. International Seminar on Crustal Evolution, Sedimentary Processes and Metallogeny (Geol. Soc. India 49th Annual Meeting, Dharwar, India) Abstracts, 23–4.900+Ma)+Purana+sediments.+International+Seminar+on+Crustal+Evolution,+Sedimentary+Processes+and+Metallogeny+(Geol.+Soc.+India+49th+Annual+Meeting,+Dharwar,+India)+Abstracts,+23–4.>Google Scholar
Beddoe-Stephens, B. & Mason, I. 1991. The volcanogenetic significance of garnet-bearing minor intrusions within the Borrowdale Volcanic Group, Eskdale area, Cumbria. Geological Magazine 128, 505–16.CrossRefGoogle Scholar
Bernet, M. & Bassett, K. 2005. Provenance analysis by single-quartz-grain SEM-CL/optical microscopy. Journal of Sedimentary Research 75, 492500.CrossRefGoogle Scholar
Bernet, M., Kapoutsos, D. & Bassett, K. 2007. Diagenesis and provenance of Silurian quartz arenites in south-eastern New York State. Sedimentary Geology 201, 4355.CrossRefGoogle Scholar
Bhowmik, S. K., Sarbadhikari, A. B., Spiering, B. & Raith, M. M. 2005. Mesoproterozoic reworking of Palaeoproterozoic ultrahigh-temperature granulites in the Central Indian Tectonic Zone and its implications. Journal of Petrology 46, 10851119.CrossRefGoogle Scholar
Birch, W. D. & Gleadow, A. J. W. 1974. The genesis of garnet and cordierite in acid volcanic rocks: Evidence from the Cerberean Cauldron, central Victoria, Australia. Contributions to Mineralogy and Petrology 45, 113.CrossRefGoogle Scholar
Blatt, H., Tracy, R. & Owens, B. E. 2006. Petrology: Igneous, Sedimentary, and Metamorphic. New York: Freeman, 530 pp.Google Scholar
Branney, M. J., Kokelaar, B. P. & McConnell, B. J. 1992. The Bad Step Tuff; a lava-like rheomorphic ignimbrite in a calc-alkaline piecemeal caldera, English Lake District. Bulletin of Volcanology 54, 187–99.CrossRefGoogle Scholar
Brousse, R., Bizouard, H. & Salat, J. 1972. Grenats des andesites et des rhyolites de Slovaquie, origine des grenats dans les series andesitiques. Garnets from Slovakian andesites and rhyolites: the origin of garnets from the andesite series. Contributions to Mineralogy and Petrology 35, 201–13.CrossRefGoogle Scholar
Burt, D. M., Sheridan, M. F., Bikun, J. V. & Christiansen, E. H. 1982. Topaz rhyolites: distribution, origin, and significance for exploration. Economic Geology and the Bulletin of the Society of Economic Geologists 77, 1818–36.CrossRefGoogle Scholar
Chakraborti, S. 1997. Elucidation of the sedimentary history of the Singhora Group of rocks, Chhattisgarh Supergroup, M. P. Record, Geological Survey of India 130, 180–7.Google Scholar
Clemens, J. D. & Wall, V. J. 1984. Origin and evolution of a peraluminous silicic ignimbrite suite: the Violet Town Volcanics. Contributions to Mineralogy and Petrology 88, 354–71.CrossRefGoogle Scholar
Dana, E. S. 1955. A Textbook of Mineralogy. New York: Wiley, 851 pp.Google Scholar
Das, D. P., Dutta, N. K., Dutta, D. R., Thanavellu, C. & Babu Rao, K. 2003. Singhora Group: the oldest Proterozoic lithopackage of eastern Bastar Craton and its significance. Indian Minerals 57, 127–38.Google Scholar
Das, D. P., Kundu, A., Das, N., Dutta, D. R., Kumaran, K., Ramamurthy, S., Thanavelu, C. & Rajaiya, V. 1992. Lithostratigraphy and sedimentation of Chhattisgarh Basin. Indian Minerals 46, 271–88.Google Scholar
Das, N., Dutta, D. R. & Das, D. P. 2001. Proterozoic cover sediments of southeastern Chhattisgarh State and adjoining parts of Orissa. Geological Survey of India Special Publication 55, 237–62.Google Scholar
Day, R. A., Green, T. H. & Smith, I. E. M. 1992. The origin and significance of garnet phenocrysts and garnet-bearing xenoliths in Miocene calc-alkaline volcanics from Northland, New Zealand. Journal of Petrology 33, 125–61.CrossRefGoogle Scholar
De, C. 2006. Ediacara fossil assemblage in the upper Vindhyans of Central India and its significance. Journal of Asian Earth Sciences 27, 660–83.CrossRefGoogle Scholar
De, C. 2007. Study of the Proterozoic life of the Chhattisgarh basin, Chhattisgarh in the light of early organic evolution, biostratigraphy and paleoenvironments. Records of the Geological Survey of India 139, 23–4.Google Scholar
Deer, W. A., Howie, R. A. & Zussman, J. 1982. An Introduction to the Rock-Forming Minerals. Longman, 528 pp.Google Scholar
Dingwell, D. B. & Brearley, M. 1985. Mineral chemistry of igneous melanite garnets from analcite-bearing volcanic rocks, Alberta, Canada. Contributions to Mineralogy and Petrology 90, 2935.CrossRefGoogle Scholar
Fareeduddin, Pant, N. C. & Neogi, S. 2006. Petrology of the Kodomali Diatreme, Mainpur area, Chhattisgarh, central India: implications for a Paleozoic orangeite field. Journal of the Geological Society of India 68, 1934.Google Scholar
Filimonova, L. G. 2004. Garnet-bearing zones of postmagmatic rhyolite alteration at the Dukat ore field and their relation to the high-grade gold-silver ores. Geology of Ore Deposits 46, 387–96.Google Scholar
Fitton, J. G. 1972. The genetic significance of almandine–pyrope phenocrysts in the calc-alkaline Borrowdale Volcanic Group, Northern England. Contributions to Mineralogy and Petrology 36, 231–48.CrossRefGoogle Scholar
Friedman, R. M., Diakow, L. J., Lane, R. A. & Mortensen, J. K. 2001. New U–Pb age constraints on latest Cretaceous magmatism and associated mineralization in the Fawnie Range, Nechako Plateau, central British Columbia. Canadian Journal of Earth Sciences 38, 619–37.Google Scholar
Frondel, C. 1970. Scandium-rich minerals from rhyolite in the Thomas range, Utah. American Mineralogist 55, 1058–60.Google Scholar
Gauthier, P. J., Deruelle, B., Viramonte, J. & Aparicio, A. 1994. Garnets from La-Pava-Ramadas Rhyolite (NW Argentian) and from its granite xenoliths. Comptes Rendes De L'Academie Des Sciences Serie II 318, 1629–35.Google Scholar
Gilbert, J. S. 1991. The stratigraphy of a proximal late Hercynian pyroclastic sequence: the Vilancós region of the Pyrenees. Geological Magazine 128, 111–28.CrossRefGoogle Scholar
Gilbert, J. S., Bickle, M. J. & Chapman, H. J. 1994. The origin of Pyrenean Hercynian volcanic rocks (France–Spain): REE and Sm–Nd isotope constraints. Chemical Geology 111, 207–26.CrossRefGoogle Scholar
Gilbert, J. S. & Rogers, N. W. 1989. The significance of garnet in the Permo-Carboniferous volcanic rocks of the Pyrenees. Journal of the Geological Society, London 146, 477–90.CrossRefGoogle Scholar
Gill, J. 1981. Orogenic Andesites and Plate Tectonics. Berlin: Springer-Verlag, 385 pp.CrossRefGoogle Scholar
Green, T. H. 1976. Experimental generation of cordierite- or garnet-bearing granitic liquids from a pelitic composition. Geology 4, 85–8.2.0.CO;2>CrossRefGoogle Scholar
Green, T. H. 1977. Garnet in silicic liquids and its possible use as a P–T indicator. Contributions to Mineralogy and Petrology 65, 5967.CrossRefGoogle Scholar
Green, T. H. & Ringwood, A. E. 1968. Origin of garnet phenocrysts in calc-alkaline rocks. Contributions to Mineralogy and Petrology 18, 163–74.CrossRefGoogle Scholar
Harangi, S. 1999. A Csodi-hegy vulkani kozetenek geokemiaja es petrogenezise. (Geochemistry and petrogenesis of the volcanic rocks from Csodi Hill). Topographia Mineralogica Hungariae 6, 5985.Google Scholar
Harangi, S., Downes, H., Kosa, L., Szabo, C. S., Thirlwall, M. F., Mason, P. R. D. & Mattey, D. 2001. Almandine garnet in calc-alkaline volcanic rocks of the northern Pannonian Basin (Eastern-Central Europe): Geochemistry, petrogenesis and geodynamic implications. Journal of Petrology 42, 1813–43.CrossRefGoogle Scholar
Harangi, S., Downes, H., Thirlwall, M. & Gmeling, K. 2007. Geochemistry, petrogenesis and geodynamic relationships of Miocene calc-alkaline volcanic rocks in the western Carpathian Arc, eastern Central Europe. Journal of Petrology 48, 2261–87.CrossRefGoogle Scholar
Hollabaugh, C. L., Robertson, B. D. & Purcell, V. L. 1989. The petrology and vapor phase mineralogy of rhyolite and tuffs from Garnet Hill, White Pine County, Nevada. Northwest Science 63, 201–10.Google Scholar
Hood, C. T. S. & McCandless, T. E. 2004. Systematic variations in xenocryst mineral composition at the province scale, Buffalo Hills kimberlites, Alberta, Canada. Lithos 77, 733–47.CrossRefGoogle Scholar
Kawabata, H. & Takafuji, N. 2005. Origin of garnet crystals in calc-alkaline volcanic rocks from the Setouchi volcanic belt, Japan. Mineralogical Magazine 69, 951–71.CrossRefGoogle Scholar
Kimata, M., Nishida, N., Shimizu, M., Saito, S. & Togawa, Y. 1995. A new Al/Si-zoning of hydrocarbon-bearing garnet in rhyolite from Mt. Nijo, Southwest Japan. Annual Report of the Institute of Geoscience, University of Tsukuba 21, 5763.Google Scholar
King, W. 1885. Sketch of the progress of geological work in the Chattisgarh division of the Central Provinces. Record Geological Survey of India 18, 169200.Google Scholar
Kumar, A., Heaman, L. M. & Manikyamba, C. 2007. Mesoproterozoic kimberlites in south India: A possible link to ~1.1 Ga global magmatism. Precambrian Research 154, 192204.CrossRefGoogle Scholar
MacKenzie, W. S. & Guilford, C. 1980. Atlas of rock-forming minerals in thin section. London: Longman, 98 pp.Google Scholar
Mainkar, D., Lehmann, B. & Haggerty, S. 2004. The crater-facies kimberlite system of Tokapal, Bastar District, Chhattisgarh, India. Lithos 76, 201–17.CrossRefGoogle Scholar
Malkovets, V. G., Griffin, W. L., O'Reilly, S. Y. & Wood, B. J. 2007. Diamond, subcalcic garnet, and mantle metasomatism: Kimberlite sampling patterns define the link. Geology 35, 339–42.CrossRefGoogle Scholar
Malone, S., Meert, J., Pandit, M., Tamrat, E. & Pradhan, V. 2006. Magnetostratigraphy and geochronology of the Vindhyanchal Basin, India. Abstracts with Programs, Geological Society of America 38, 399.Google Scholar
Mishra, V. P. & Babu Rao, K. 1990. Geology of Gunderdehi–Kumhari–Simga area, Durg and Raipur District, M.P. Record of the Geological Survey of India 123, 31–3, 61–5.Google Scholar
Mitropoulos, P., Katerinopoulos, A. & Kokkinakis, A. 1999. Occurrence of primary almandine–spessartine-rich garnet and zinnwaldite phenocrysts in a Neogene rhyolite on the island of Chios, Aegean Sea, Greece. Mineralogical Magazine 63, 503–10.CrossRefGoogle Scholar
Murti, K. S. 1987. Stratigraphy and sedimentation in Chattisgarh Basin. In Purana Basins of Peninsular India (ed. Radhakrishna, B. P.), pp. 239–60. Memoir of the Geological Society of India no. 6. Bangalore.Google Scholar
Nesse, W. D. 2004. Introduction to Optical Mineralogy. New York: Oxford University Press, 348 pp.Google Scholar
Oliver, R. L. 1956. The origin of garnets in the Borrowdale volcanic series and associated rocks, English Lake District. Geological Magazine 93, 121–39.CrossRefGoogle Scholar
Pabst, A. 1938. Garnets from vesicles in rhyolite near Ely, Nevada. American Mineralogist 23, 101–3.Google Scholar
Pascoe, E. H. 1950. Manual of the Geology of India and Burma (compiled from observations of Geological Survey of India and from sources by H. B. Medlicott & Edwin H. Pascoe), v. 1, pp. 1483. Calcutta: Government of India.Google Scholar
Patranabis-Deb, S. 2004. Proterozoic stratigraphy of the area around Sarangarh in the eastern part of the Chattisgarh basin, Madhya Pradesh, India. Gondwana Research 7, 323–37.Google Scholar
Patranabis-Deb, S., Bickford, M. E., Hill, B., Chaudhuri, A. K. & Basu, A. 2007. SHRIMP ages of zircon in the uppermost tuff in Chattisgarh Basin in central India require ~500 Ma adjustment in Indian Proterozoic stratigraphy. Journal of Geology 115, 407–15.CrossRefGoogle Scholar
Patranabis-Deb, S. & Chaudhuri, A. K. 2002. Stratigraphic architecture of the Proterozoic succession in the eastern Chattisgarth Basin, India: tectonic implications. Sedimentary Geology 147, 105–25.CrossRefGoogle Scholar
Patranabis-Deb, S. & Chaudhuri, A. K. 2007. A retreating fan-delta system in the Neoproterozoic Chattisgarh rift basin, central India: Major controls on its evolution. American Association of Petroleum Geologists Bulletin 91, 785808.CrossRefGoogle Scholar
Pearce, T. H. 2001. Pristine surface growth features on 100 Ma garnet phenocrysts; interference imaging results. American Mineralogist 86, 1302–6.CrossRefGoogle Scholar
Purcell, V. L. & Robertson, B. D. 1984. The origin of garnets in rhyolite near Ely, Nevada. Georgia Journal of Science 42, 20.Google Scholar
Rasmussen, B., Bengtson, S., Fletcher, I. R. & McNaughton, N. J. 2002. Discoidal impressions and trace-like fossils more than 1200 million years old. Science 296, 1112–15.CrossRefGoogle ScholarPubMed
Ray, J. S., Martin, M. W., Veizer, J. & Bowring, S. A. 2002. U–Pb zircon dating and Sr isotope systematics of the Vindhyan Supergroup, India. Geology 30, 131–4.2.0.CO;2>CrossRefGoogle Scholar
Ray, J. S., Veizer, J. & Davis, W. J. 2003. C, O, Sr and Pb isotope systematics of carbonate sequences of the Vindhyan Supergroup, India: age, diagenesis, correlations and implications for global events. Precambrian Research 121, 103–40.CrossRefGoogle Scholar
Reymer, A. P. S. 1983. Occurrence of garnet-bearing rhyolite in Sinai. Israel Journal of Earth Sciences 32, 117–21.Google Scholar
Richardson, S. H., Erlank, A. J., Harris, J. W. & Hart, S. R. 1990. Eclogitic diamonds of Proterozoic age from Cretaceous kimberlites. Nature 346, 54–6.CrossRefGoogle Scholar
Richardson, S. H., Gurney, J. J., Erlank, A. J. & Harris, J. W. 1984. Origin of diamonds in old enriched mantle. Nature 310, 198202.CrossRefGoogle Scholar
Saleh, G. M. & Makroum, F. M. 2003. Pan-African magmatism: geochemical evolution and uranium mineralization of granitoid rocks, southeastern Desert, Egypt. International Geology Review 45, 157–75.CrossRefGoogle Scholar
Sarangi, S., Gopalan, K. & Kumar, S. 2004. Pb–Pb age of earliest megascopic, eukaryotic alga bearing Rohtas Formation, Vindhyan Supergroup, India: implications for Precambrian atmospheric oxygen evolution. Precambrian Research 132, 107–21.CrossRefGoogle Scholar
Schulze, D. J., Valley, J. W., Spicuzza, M. J. & Channer, D. M. D. 2003. Oxygen isotope composition of eclogitic and peridotitic garnet xenocrysts from the La Ceniza Kimberlite, Guaniamo, Venezuela. International Geology Review 45, 968–75.CrossRefGoogle Scholar
Scully, K. R., Canil, D. & Schulze, D. J. 2004. The lithospheric mantle of the Archean Superior Province as imaged by garnet xenocryst geochemistry. Chemical Geology 207, 189221.CrossRefGoogle Scholar
Seyedolali, A., Krinsley, D. H., Boggs, S. Jr, O'Hara, P. F., Dypvik, H. & Goles, G. G. 1997. Provenance interpretation of quartz by scanning electron microscope cathodoluminescence fabric analysis. Geology 25, 787–90.2.3.CO;2>CrossRefGoogle Scholar
Shinjoe, H., Orihashi, Y., Sumii, T. & Nakai, S. 2002. Bulk rock chemistry of the Muro pyroclastic flow deposit: a clue to its source region. Ganseki Kobutsu Kagaku = Japanese Magazine of Mineralogical and Petrological Sciences 31, 307–17.CrossRefGoogle Scholar
Sisson, T. W. & Bacon, C. R. 1992. Garnet/high-silica rhyolite trace-element partition coefficients measured by ion microprobe. Geochimica et Cosmochimica Acta 56, 2133–6.CrossRefGoogle Scholar
Smith, T. R. & Cole, J. W. 1996. Stratigraphic and petrological variation of the Mount Somers Volcanics Group, mid Canterbury, New Zealand. New Zealand Journal of Geology and Geophysics 39, 445–60.CrossRefGoogle Scholar
Subba Rao, D., Mukherjee, A., Khan, M. W. Y. & Sridhar, D. N. 2006. New occurrence of intrabasinal ignimbrites and welded tuffs from NE part of the Meso- to Neoproterozoic Chhattisgarh Basin, Bastar Craton: implication for petrogenesis. Journal of the Geological Society of India 68, 589–92.Google Scholar
Subba Rao, D. V., Sreenivas, B., Charan, S. N. & Sridhar, D. N. 2007. Geochemistry of the unusual metapelite enclaves in the basement of the Proterozoic Singhora Basin, Bastar Craton, central India. International Seminar on Crustal Evolution, Sedimentary Processes and Metallogeny (Abstracts), 9–10.Google Scholar
White, A. J. R. & Chappell, B. W. 1977. Ultrametamorphism and granitoid genesis. Tectonophysics 43, 722.CrossRefGoogle Scholar
White, J. S. 1992. An occurrence of bixbyite, spessartine, topaz and pseudobrookite from Ash Creek near Hayden, Arizona. The Mineralogical Record 23, 487–92.Google Scholar
Williams, H., Turner, F. J. & Gilbert, C. M. 1982. Petrography: An Introduction to the Study of Rocks in Thin Sections. San Francisco: Freeman, 626 pp.Google Scholar
Wood, C. P. 1974. Petrogenesis of garnet-bearing rhyolites from Canterbury, New Zealand. New Zealand Journal of Geology and Geophysics 17, 759–87.CrossRefGoogle Scholar
Zinkernagel, U. 1978. Cathodoluminescence of quartz and its applications to sandstone petrology. Contributions to Sedimentology 8, 69 pp.Google Scholar
Supplementary material: File

Patranabis-Deb Supplementary Material

Appendix.doc

Download Patranabis-Deb Supplementary Material(File)
File 465.9 KB