Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-30T16:28:28.871Z Has data issue: false hasContentIssue false

The Cretaceous—Tertiary boundary in Mangyshlak, U.S.S.R.

Published online by Cambridge University Press:  01 May 2009

D. P. Naidin
Affiliation:
Faculty of Geology, Moscow State University, Moscow V-234, U.S.S.R.

Abstract

Upper Cretaceous carbonate sequences contain omission surfaces, hardgrounds and intercalations of ‘clays’. These ‘clays’ are largely associated with submarine biogeochemical carbonate dissolution that was caused by high biological productivity in the pelagic zone. The Maastrichtian-Danian ‘boundary clays’ probably accumulated during a maximum productivity that led to the exhaustion of nutrients, development of phenomena comparable to present-day red tides, and mass mortality of marine biota. There was a type of ecological break in the seas and oceans at the time of the Maastrichtian-Danian boundary.

Type
Articles
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adachi, R. 1972. Taxonomical study of the Red Tide organisms. Journal of Faculty Fishery, University of Mie 9, 1114.Google Scholar
Alekseev, A. S. 1984. A quantitative analysis of extinctions at the Mesozoic–Cenozoic boundary. Bulletin of the Moscow Society of Naturalists. Geological Series 59 (2), 87102 (in Russian). International Geological Review 26, 1006–20.Google Scholar
Arthur, M. A. 1977. Sedimentology of Gubbio sequence and its bearing on paleomagnetism. Memorie della Società geologica Italiana 15, 920.Google Scholar
Berggren, W. A. 1962. Some planktonic foraminifera from the Maestrichtian and type Danian stages of southern Scandinavia. Stockholm Contributions in Geology 9, 1136.Google Scholar
Bramlette, M. N. 1965. Massive extinctions in biota at the end of Mesozoic time. Science, 148, 1696–9.CrossRefGoogle ScholarPubMed
Bromley, R. G. 1979. Chalk and bryozoan limestone: facies, sediments and depositional environments. In Cretaceous–Tertiary Boundary Events, Vol. 1 (ed: Birkelund, T. and Bromley, R. G.), pp. 1632. University of Copenhagen.Google Scholar
Brongersma-Sanders, M. 1957. Mass mortality in the sea. Geological Society of America, Memoir 67, 9411010.CrossRefGoogle Scholar
Brotzen, F. 1959. On Tylocidaris species (Echinoidea) and the stratigraphy of the Danian of Sweden. Sveriges Geologiska Undersökning, ser.C, N 571, Årsbok 54 (2), 190.Google Scholar
Cita, M. B. & Premoli-Silva, I. 1974. Il limite Cretaceo-Paleocene e l'evoluzione della Tetide. Rivista Italiana di Paleontologia e Stratigrafia 14, 193249.Google Scholar
Ernst, H. 1982. The marl layer M100 in the Maastrichtian of Hemmoor – an example of selective CaCO3 dissolution. Geologisches Jahrbuch A61, 109–27.Google Scholar
Golubev, S. N. 1981. Real Crystals in the Coccolithophorid Skeletons. Moscow: "Nauka", 1164 (in Russian).Google Scholar
Hancock, J. M. & Kauffman, E. G. 1979. The great transgressions of the Late Cretaceous. Journal of the Geological Society of London 136, 175–86.CrossRefGoogle Scholar
Hemleben, C. 1977. Fossil-Lagerstätten im Libanon. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 4, 239–55.Google Scholar
Herm, D. 1965. Mikropaläontologisch-stratigraphische Untersuchungen im Kreideflysch zwischen Deva und Zumaya (Prov. Guipuzcoa, Nordspanien). Zeitschrift der Deutschen geologischen Gesellschaft 115, 277348.Google Scholar
Hillebrandt, A. von. 1964. Zur Entwicklung der planktonischen Foraminiferen im Alttertiär und ihre stratigraphische Bedeutung. Paläontologische Zeitschrift 38, 189206.CrossRefGoogle Scholar
Hofker, J. 1960. The foraminifera of the lower boundary of the Danish Danian. Bulletin of the Geological Society of Denmark 14, 212–42.Google Scholar
Hsü, K. 1980. Terrestrial catastrophe caused by cometary impact at the end of Cretaceous. Nature 285, 201–3.CrossRefGoogle Scholar
Kennedy, W. J. & Garrison, R. E. 1975. Morphology and genesis of nodular chalks and hardgrounds in the Upper Cretaceous of southern England. Sedimentology 22, 311–86.CrossRefGoogle Scholar
Nadson, G. A. 1903. Microorganisms as geological workers. St. Petersburg: Trudy Komissii po Issledovaniyu Slavyanskikh Mineralnykh Ozer, 98 pp., 16 plates (in Russian).Google Scholar
Naidin, D. P. 1985. Cretaceous–Palaeogene boundary: stratigraphic aspects. Bulletin of the Moscow Society of Naturalists Geological Series 60 (5), 7185 (in Russian).Google Scholar
Naidin, D. P., Benjamovsky, V. N. & Kopaevich, L. F. 1984. Methods of Transgressions and Regressions Study (Exemplified by the Late Cretaceous Basins of West Kazakhstan). Moscow University Press, 1162 (in Russian with English summary).Google Scholar
Naidin, D. P., Pokhialajnen, V. P., Kats Yu, I., Krassilov, V. A. 1986. The Cretaceous Period. Palaeogeography and Palaeooceanology. Moscow: ‘Nauka’ (in Russian). 262 pp.Google Scholar
Naidin, D. P., Sasonova, I. G., Pojarkova, Z. N., Djalilov, M. R., Papulov, G. N., Senkovsky, Yu. N., Benjamovsky, V. N. & Kopaevich, L. F. 1980. Cretaceous transgressions and regressions on the Russian Platform, in Crimea and Central Asia. Cretaceous Research 1, 375–87.CrossRefGoogle Scholar
Nazarov, M. A., Barsukova, L. D., Kolesov, G. M., Naidin, D. P. & Alekseev, A. S. 1983. Origin of the Iridium anomaly at the boundary between the Maastrichtian and Danian stages. Geokhimia 8, 1160–78. (in Russian); Geochemistry International 20 (4), 142–59.Google Scholar
Paasche, E. 1968. The effect of temperature, light intensity and photoperiod on coccolith formation. Limnology and Oceanography 13, 178–81.CrossRefGoogle Scholar
Perch-Nielsen, K. 1985. Calcareous nannofossils at the Maastrichtian/Danian boundary in Kyzylsaj (Mangyshlak). USSR. Proceedings of the International Nannoplankton Association, INA Newsletter 7, 75–7.Google Scholar
Premoli-Silva, I. & Paggi, L. 1977. Cretaceous through Paleocene biostratigraphy of the pelagic sequence at Gubbio, Italy. Memorie della Società geologica Italiana 15, 2132.Google Scholar
Russell, D. A. 1982. The mass extinctions of the Late Mesozoic. Scientific American 246, 4855.CrossRefGoogle Scholar
Shimansky, V. N. & Soloviev, A. N. 1982. Mesozoic-Cenozoic boundary in the development of organic Kingdom. Moscow: "Nauka", 140 (in Russian).Google Scholar
Stenestad, E. 1971. Upper Cretaceous in the deep test well Rønde No 1 in Djursland. Geological Survey of Denmark. 3rd series 39, 5360.Google Scholar
Stenestad, E. 1979. Upper Cretaceous foraminifera from Danish Basin. In Cretaceous-Tertiary Boundary Events, Vol. 1 (ed: Birkelund, T. and Bromley, R. G.), pp. 101–7. University of Copenhagen.Google Scholar
Sukachev, V. N. 1945. Biogeocoenology and phytocoenology. Comptes Rendus de l'académie des Sciences de l'URSS, Nouvelle Série 47, 429–31.Google Scholar
Tappan, H. 1968. Primary production, isotopes, extinctions and the atmosphere. Palaeogeography, Palaeo-climatology, Palaeoecology 4, 187210.CrossRefGoogle Scholar
Vail, P. R., Mitchum, R. M.. & Thompson, S. 1977. Global cycles of relative changes of sea level. American Association of Petroleum Geologists, Memoir 26, 8397.Google Scholar
Wicher, C. A. 1953. Mikropaläontologische Beobachtungen in der höheren borealen Oberkreide, besonders im Maastricht. Geologisches Jahrbuch 68, 126.Google Scholar
Worsley, T. 1974. The Cretaceous-Tertiary boundary event in the ocean. Society of Economic Paleontologists and Mineralogists, Special Publication 20, 94125.Google Scholar
Zelenov, K. K. 1963. Oceanic water as a product of volcanism. Academy of Sciences of the USSR, Bulletin of Volcanological Station 34, 5155 (in Russian).Google Scholar