Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-12T08:41:12.491Z Has data issue: false hasContentIssue false

Discussion on the fluctuating oceanographic conditions and glacial control across the Cenomanian-Turonian boundary

Published online by Cambridge University Press:  01 May 2009

D. Uličný
Affiliation:
Department of Geology, University of Illinois, 245 Natural History Building, 1301 West Green Street, Urbana, lllinois 61801, U.S.A. (Present address: Department of Geology, Karlovy University, Albertov 6, 12843, Praha 2, Czechoslovakia.)
C. V. Jeans
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, U.K.

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Discussions
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arthur, M. A., Dean, W. E. & Pratt, L. M. 1988. Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian-Turonian boundary. Nature 335, 714–17.Google Scholar
Arthur, M. A., Schlanger, S. O. & Jenkyns, H. C. 1987. The Cenomanian-Turonian Oceanic Anoxic Event II: paleoceanographic controls on organic matter production and preservation. In Marine Petroleum Source Rocks (eds Brooks, J. and Fleet, A.), pp. 401–20. Special Publication, Geological Society of London no. 26.Google Scholar
Bralower, T. J. 1988. Calcareous nannofossil biostratigraphy and assemblages of the Cenomanian-Turonian boundary interval: implications for the origin and timing of oceanic anoxia. Paleoceanography 3, 275316.Google Scholar
Corfield, R. M., Hall, M. A. & Brasier, M. D. 1990. Stable isotope evidence for foraminiferal habitats during the development of the Cenomanian-Turonian oceanic anoxic event. Geology 18, 175–8.Google Scholar
Elder, W. P. 1991. Molluscan paleoecology and sedimentation patterns of the Cenomanian-Turonian extinction interval in the southern Colorado Plateau region. Geological Society of America Special Paper 260, 113–37.Google Scholar
Gale, A. & Corfield, R. 1991. Interregional high resolution of Late Cenomanian-Early Turonian strata from δ13C profiles and faunas. Geologie Alpine, Memoire hors serie 17, 41.Google Scholar
Hancock, J. M. 1989. Sea-level changes in the British region during the Late Cretaceous. Proceedings of the Geologists' Association 100, 565–94.CrossRefGoogle Scholar
Haq, B. U., Hardenbol, J. & Vail, P. R. 1988: Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. In Sea-level changes: an integrated approach (eds Wilgus, C. K. et al. ), pp. 71108. Society of Economic Paleontologists and Mineralogists Special Publication no. 42.CrossRefGoogle Scholar
Hardenbol, J., Caron, M., Amedro, F., Dupuis, C. & Robaszynski, F. 1991. The Cenomanian-Turonian boundary in central Tunisia in context of a sequencestratigraphic interpretation. Géologie Alpine, Mémoirehors serie 17, 51.Google Scholar
Hayes, J. M., Popp, B. N., Taigiku, R. & Johnson, M. W. 1989. An isotopic study of biogeochemical relationships between carbonates and organic carbon in the Greenhorn Formation. Geochimica et Cosmochimica Acta 53, 2961–72.Google Scholar
Hilbrecht, H. & Hoefs, J. 1986. Geochemical and paleontological studies of the δ13C anomaly in Boreal and North Tethyan Cenomanian-Turonian sediments in Germany and adjacent areas. Palaeogeography, Palaeoclimatology, Palaeoecology 53, 169–89.CrossRefGoogle Scholar
Jarvis, I., Carson, G. A., Cooper, M. K. E., Hart, M. B., Leary, P. N., Tocher, B. A., Horne, D. & Rosenfeld, A. 1988. Microfossil assemblages and the Cenomanian-Turonian (Late Cretaceous) Oceanic Anoxic Event. Cretaceous Research 9, 3103.CrossRefGoogle Scholar
Jeans, C. V. 1980. Early submarine lithification in the Red Chalk and Lower Chalk of East England: a bacterial control model and its implications. Proceedings of the Yorkshire Geological Society 43, 81157.CrossRefGoogle Scholar
Jeans, C. V., Long, D., Hall, M. A., Bland, D. J. & Cornford, C. 1991. The geochemistry of the Plenus Marls at Dover, England: evidence of fluctuating oceanographic conditions and of glacial control during the development of the Cenomanian-Turonian δ13C anomaly. Geological Magazine 128, 603–32.CrossRefGoogle Scholar
Juignet, P. & Breton, G. 1992. Mid-Cretaceous sequence stratigraphy and sedimentary cyclicity in the western Paris Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 91, 197218.Google Scholar
Schlanger, S. O., Arthur, M. A., Jenkyns, H. C. & Scholle, P. A. 1987. The Cenomanian-Turonian oceanic anoxic event. I. Stratigraphy and distribution of organic carbon-rich beds and the marine δ13C excursion. In Marine Petroleum Source Rocks (eds Brooks, J. and Fleet, A. J.), pp. 371–99. Special Publication, Geological Society of London no. 26.Google Scholar
Schlanger, S. O. & Jenkyns, H. C. 1976. Cretaceous oceanic anoxic events: causes and consequences. Geologie en Mijnbouw 55, 179–84.Google Scholar
Uličný, D., Hladikova, J. & Hradecka, L. in press. Record of sea-level changes, oxygen depletion and the δ13C anomaly across the Cenomanian-Turonian boundary, Bohemian Cretaceous basin. Cretaceous Research.Google Scholar