Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-15T08:32:16.108Z Has data issue: false hasContentIssue false

Geochemistry of Upper Riphean-Vendian basalts associated with the ‘sparagmites’ of southern Norway

Published online by Cambridge University Press:  01 May 2009

H. Furnes
Affiliation:
Geologisk Institutt Avd A, All´gt 41 5014 Bergen, Norway
J. P. Nystuen
Affiliation:
Institutt for Geologi, Norges Landbrukshøgskole Boks 21 1432 Ås-NLH, Norway
A. O. Brunfelt
Affiliation:
Mineralogisk-geologisk museum, Sarsgt 1 Oslo 5, Norway
S. Solheim
Affiliation:
Mineralogisk-geologisk museum, Sarsgt 1 Oslo 5, Norway

Abstract

Summary. Upper Riphean/Vendian basalt lavas within the Hedmark Group of the Osen-Røa Nappe Complex, the lowest tectonostratigraphic unit within the Scandinavian Caledonides, are typical continental tholeiites. Differences in their REE patterns may reflect source heterogeneities, while the general lack of correlation between incompatible trace element ratios may be due to contamination of the basalts by continental crust. Their association with fluvial deposits in NNW-trending graben, and some geochemical disparities with time-equivalent basalt dykes of MORB-like character in tectonically higher units, may indicate their formation in an aulacogen related to the central rift zone of the lapetus Ocean.

Type
Articles
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderton, R. 1982. Dalradian deposition and the late Precambrian-Cambrian history of the N. Atlantic region: a review of the early evolution of the Iapetus Ocean. J. geol. Soc. Lond. 139, 421–31.CrossRefGoogle Scholar
Andreasson, P. G., Solyom, Z. & Roberts, D. 1979. Petrochemistry and tectonic significance of basic and alkaline-ultrabasic dykes in the Leksdal Nappe, Northern Region, Norway. Norg. geol. Unders. 348, 4772.Google Scholar
Bjørlykke, K. 1969. Geologien i sentrale deler av Østerdalen. Norsk geol. Tidsskr. 49, 313–18.Google Scholar
Bjørlykke, K., Elvsborg, A. & Høy, T. 1976. Late Precambrian sedimentation in the central sparagmite basin of south Norway. Norsk geol. Tidsskr. 56, 233–90.Google Scholar
Bockelie, J. F. & Nystuen, J. P. 1983. The southeastern part of the Scandinavian Caledonides. In The Caledonian Orogen-Scandinavia and Related Areas (eds Gee, D. G. and Sturt, B. A.). New York: John Wiley (in press).Google Scholar
Brunfelt, A. O. & Steinnes, E. 1969. Instrumental activation analyses of silicate rocks with epithermal neutrons. Anal. Chim. Acta 48, 1324.CrossRefGoogle Scholar
Brunfelt, A. O. & Steinnes, E. 1978. Neutron activation analyses for trace element determination in geostandards. Geostandards Newsletters 2, 37.CrossRefGoogle Scholar
Carter, S. R., Evensen, N. M., Hamilton, P. J. & O'Nions, R. K. 1978. Neodymium and strontium isotope evidence for crustal contamination of continental volcanics. Science 202, 743–46.CrossRefGoogle ScholarPubMed
Claesson, S. & Roddick, J. C. 1983. 40Ar/39Ar data on the age and metamorphism of the Ottfjället Dolerites, Särv Nappe, Swedish Caledonides. Lithos (in press).CrossRefGoogle Scholar
Faure, G., Bowman, J. R., Elliot, D. H. & Jones, L. M. 1974. Strontium isotope composition and petrogenesis of the Kirkpatrick Basalt, Queen Alexandra Range, Antarctica. Contrib. Miner. Petrol. 48, 153–69.CrossRefGoogle Scholar
Ferrara, G. & Treuil, M. 1974. Petrological implications of trace element and Sr isotope distribution in basalt-pantellerite series. Bull. Volc. 38, 548–74.CrossRefGoogle Scholar
Flanagan, F. J. 1973. 1972-values for international geochemical standards. Geochim. cosmochim. Acta 37, 11891200.CrossRefGoogle Scholar
Floyd, P. A. & Winchester, J. A. 1975. Magma type and tectonic setting discrimination using immobile elements. Earth Planet. Sci. Lett. 27, 211–18.CrossRefGoogle Scholar
Frey, R., Haskin, M. A., Poetz, J. A. & Haskin, L. A. 1968. Rare earth abundances in some basaltic rocks. J. Geophys. Res. 73, 6085–98.CrossRefGoogle Scholar
Furnes, H., Neumann, E.-R. & Sundvoll, B. 1982. Petrology and geochemistry of Jurassic basalt dykes from Vestfjella, Dronning Maud Land, Antarctica. Lithos 15, 295304.CrossRefGoogle Scholar
Furnes, H., Ryan, P. D., Grenne, T., Roberts, D., Sturt, B. A. & Prestvik, T. 1983. Geological and geochemical classification of ophiolite fragments in the Scandinavian Caledonides. In The Caledonian Orogen-Scandinavia and Related Areas (eds Gee, D. G. and Sturt, B. A.). New York: John Wiley (in press).Google Scholar
Gayer, R. A. & Humphreys, R. J. 1981. Tectonic modelling of the Finnmark and Troms Caledonides based on high level igneous rock geochemistry. Terra cognita 1, 44.Google Scholar
Gee, D. G. 1975. A tectonic model for the central part of the Scandinavian Caledonides. Am. J. Sci. 275A, 468515.Google Scholar
Graham, C. M. & Bradbury, H. J. 1981. Cambrian and late Precambrian basaltic igneous activity in the Scottish Dalradian: a review. Geol. Mag. 118, 2737.CrossRefGoogle Scholar
Hanson, G. N. 1977. Geochemical evolution of the suboceanic mantle. J. geol. Soc. Lond. 134, 235–53.CrossRefGoogle Scholar
Hart, S. R., Erlank, A. J. & Kable, E. J. D. 1974. Sea floor basalt alterations; some chemical and Sr isotopic effects. Contrib. Miner. Petrol. 44, 219–30.CrossRefGoogle Scholar
Hellman, P. L., Smith, R. E. & Henderson, D. 1979. The mobility of the rare earth elements: evidence and implications from selected terrains affected by burial metamorphism. Contrib. Miner. Petrol. 71, 2344.CrossRefGoogle Scholar
Hill, T. 1980. Geochemistry of the greenschists in relation to the Cu-Fe deposits in the Ramundberget area, central Swedish Caledonides. Norg. geol. Unders. 360, 195210.Google Scholar
Holmsen, P. & Oftedahl, C. 1956. Ytre Rendal og Stor-Elvdal. Beskrivelse til de geologiske rektangelkart. Norg. geol. Unders. 194.Google Scholar
Humphris, S. E. & Thompson, G. 1978. Trace element mobility during hydrothermal alteration of oceanic basalts. Geochim. cosmochim. Acta 42, 127–36.CrossRefGoogle Scholar
Kumpulainen, R. 1980. Upper Proterozoic stratigraphy and depositional environments of the Tossåsfjället Group, Särv Nappe, southern Swedish Caledonides. Geol. För. Stockh. Förh. 102, 531–50.CrossRefGoogle Scholar
Langmuir, C. H., Bender, J. F., Bence, A. E., Hanson, G. H. & Taylor, S. R. 1977. Petrogenesis of basalts from the FAMOUS area: Mid-Atlantic Ridge. Earth Planet. Sci. Lett. 36, 133–56.CrossRefGoogle Scholar
Minster, J. F. & Allegre, C. J. 1978. Systematic use of trace elements in igneous processes. Part III: Inverse problem of batch partial melting in volcanic suites. Contrib. Miner. Petrol. 68, 3752.CrossRefGoogle Scholar
Nicholls, I. A. & Harris, K. L. 1980. Experimental rare earth element partition coefficients for garnet, clinopyroxene and amphibole coexisting with andesitic and basaltic liquids. Geochim. Cosmochim. Acta 44, 287308.CrossRefGoogle Scholar
Nystuen, J. P. 1981. The Late Precambrian ‘sparagmite’ of southern Norway: A major Caledonian allochthon - The Osen-Røa Nappe Complex. Am. J. Sci. 281, 6994.CrossRefGoogle Scholar
Nystuen, J. P. 1982. Late Proterozoic basin evolution on the Baltoscandian craton: the Hedmark Group, southern Norway. Norg. geol. Unders. 375, 175.Google Scholar
Nystuen, J. P. & Ilebekk, S. 1981. Stratigraphy and Caledonian structures in the area between the Atnsjøen and Spekedalen windows, Sparagmite Region, southern Norway. Norsk geol. Tidsskr. 61, 1724.Google Scholar
Pearce, J. A. 1980. Geochemical evidence for the genesis and eruptive setting of lavas from Tethyan ophiolites. Proc. Int. Ophiolite Symp., Nicosia, 1979, 261–72.Google Scholar
Pearce, J. A. & Cann, J. R. 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet. Sci. Lett. 19, 290300.CrossRefGoogle Scholar
Phillips, W. E. A., Stillman, C. J. & Murphy, T. 1976. A Caledonian plate tectonic model. J. geol. Soc. Lond. 132, 579609.CrossRefGoogle Scholar
Prost, A. E. 1975. Etude g´ologique des Caledonides externes dans la region du fjell de Ringebu (Provinces de Hedmark et d' Oppland, Norvège centrale). Thèse de doctorale, L'Univ. Piere et Marie Curie, Paris.Google Scholar
Roberts, D. & Gale, G. H. 1978. The Caledonian-Appalachian Ocean. In Evolution of the Earth's Crust, pp. 255342. London, New York: Academic Press.Google Scholar
Roberts, D. & Gee, D. G. 1983. Caledonian tectonics in Scandinavia. In The Caledonide Orogen-Scandinavia and Related Areas. New York: John Wiley (in press).Google Scholar
Röshoff, K. 1975. A possible glaciogene sediment in the Särv Nappe, central Swedish Caledonides. Geol. För. Stockh. Förh. 97, 192–95.CrossRefGoogle Scholar
Sæther, T. 1979. Storsjøen, berggrunnsgeologisk kart 1918 II, M 1:50000. Norg. geol. Unders.Google Scholar
Sæther, T. & Nystuen, J. P. 1981. Tectonic framework, stratigraphy, sedimentation and volcanism of the Late Precambrian Hedmark Group, Østerdalen, south Norway. Norsk geol. Tidsskr. 61, 193211.Google Scholar
Scott, R. B. & Hajash, A. 1976. Initial submarine alteration of basaltic pillow lavas: a microprobe study. Am. J. Sci. 276, 480501.CrossRefGoogle Scholar
Shervais, J. W. 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet. Sci. Lett. 59, 101–18.CrossRefGoogle Scholar
Solyom, Z., Andreasson, P. G. & Johansson, I. 1979. Geochemistry of amphibolites from Mt. Sylarna, Central Scandinavian Caledonides. Geol. För. Stockh. Förh. 101, 1727.CrossRefGoogle Scholar
Solyom, Z., Gorbatchev, R. & Johansson, I. 1979. The Ottfjället Dolerites. Geochemistry of the dyke swarm in relation to the geodynamics of the Caledonide orogen in central Scandinavia. Sveriges geol. Unders. C 756.Google Scholar
Stephens, M. B., Furnes, H., Robins, B. & Sturt, B. A. 1983. Igneous activity within the Scandinavian Caledonides. In The Caledonide Orogen-Scandinavia and Related Areas (eds Gee, D. G. and Sturt, B. A.). New York: John Wiley (in press).Google Scholar
Stukas, V. & Reynolds, P. H. 1974. 40Ar/39Ar dating of the Long Range Dikes, Newfoundland. Earth Planet. Sci. Lett. 22, 256–66.CrossRefGoogle Scholar
Sturt, B. A., Pringle, I. R. & Ramsay, D. M. 1978. The Finnmarkian phase of the Caledonian orogeny. J. geol. Soc. Lond. 135, 597610.CrossRefGoogle Scholar
Sun, S-S. & Hanson, G. N. 1976. Rare earth element evidence for differentiation of McMurdo volcanics, Ross Island, Antarctica. Contrib. Miner. Petrol. 54, 139–55.CrossRefGoogle Scholar
Thomson, G. 1973. A geochemical study of the low-temperature interaction of sea-water and oceanic igneous rocks. Trans. Am. Geophys. Union 54, 1015–19.Google Scholar
Trouw, R. A. J. 1973. Structural geology of the Marsfjällen area, Caledonides of Västerbotten, Sweden. Sveriges geol. Unders. C 689.Google Scholar
Vallance, T. G. 1974. Spilite degradation of a tholeiitic basalt. J. Petrol. 15, 7996.CrossRefGoogle Scholar
Werenskiold, W. 1911. Søndre Fron. Fjellbygningen inden rektangelkartet Søndre Frons omraade. Norg. geol. Unders. 69.Google Scholar
Zachrisson, E. 1973. The westerly extension of Seve rocks within the Seve-Køli Nappe Complex of the Scandinavian Caledonides. Geol. För. Stockh. Förh. 95, 243–51.CrossRefGoogle Scholar