Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-07-25T14:58:38.675Z Has data issue: false hasContentIssue false

Goethite ooids: growth mechanism and sandwave transport in the Lower Greensand (early Cretaceous, southern England)

Published online by Cambridge University Press:  01 May 2009

N. Schiavon
Affiliation:
c/o Dipartimento di Scienze Geologiche, Universitá di Bologna, via Zamboni 65–67, 40126 Bologna, Italy

Abstract

The Woburn Sands (Lower Greensand Group, Aptian–Albian age), in Billington Crossing quarry, Leighton Buzzard, Bedfordshire, England, show, along bedding planes of tabular cross-stratification, foreset alternations of quartz grains and goethitic ooids. Field and petrographic evidence suggest that: (a) the goethite in the layers and cores is primary; (b) the ooids formed by mechanical accretion of original Fe-hydroxide gels around nuclei on the sea-floor in shallower nearshore adjacent environments; (c) goethite cores of some ooids represent an earlier stage of iron deposition within the sediment where silica adsorbed by the iron-gels segregated in inclusions; (d) short-term variations in current strength and iron supply are responsible for the different arrangements of goethite platelets (tangential to random to radial) in the ferruginous layers in connection with the degree of crystallization of the colloidal iron during the accretion stage; (e) the ooids were then swept away in deeper waters by tidal action where their segregation in the lower parts of each foreset lamina is believed to have been hydraulically controlled.

Type
Articles
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J. R. L. 1982. Mud-drapes in sandwave deposits: a physical model with application to the Folkestone Beds (Early Cretaceous, southeast England). Philosophical Transactions of the Royal Society of London, series A, 306, 291345.Google Scholar
Allen, J. R. L. & Narayan, J. 1964. Cross-stratified units, some with silt bands, in the Folkestone Beds (Lower Greensand) of south-east England. Geologie en Mijnbouw 43, 451–61.Google Scholar
Bhattacharyya, D. P. & Kakimoto, P. 1982. Origin of ferriferous ooids: an SEM study of ironstone ooids and bauxite pisoids. Journal of Sedimentary Petrology 52, 849–57.Google Scholar
Bridges, P. H. 1982. Ancient offshore tidal deposits. In Offshore Tidal Sands (ed. Stride, A. H.), pp. 172–92. London: Chapman & Hall.Google Scholar
Bubenicek, L. 1961. Recherches sur la costitution et le repartition du minerai du fer dans l&Aalenian de Lorraine. Sciences de la Terre 8, 5204.Google Scholar
Buck, S. G. 1985. Sand-flow cross strata in tidal sands of the Lower Greensand (Early Cretaceous southern England). Journal of Sedimentary Petrology 55, 895906.Google Scholar
Casey, R. 1961. The stratigraphical palaeontology of the Lower Greensand. Palaeontologyt 3, 487621.Google Scholar
Chauvel, J. J. & Massa, D. 1981. Paleozoique de Libye occidentale. Constantes geologiques et petrographiques. Signification des niveaux ferrugineux colitiques. Compagnie Francaise des Petroles (CFP). Notes et Memoires 16, 2566.Google Scholar
Cope, J. C. W., Duff, K. L., Parsons, C. F., Torrens, H. S., Wimbledon, W. A. & Wright, J. K. 1980. A Correlation of Jurassic Rocks in the British Isles, part two. Geological Society Special Reports no. 15.Google Scholar
DeMowbray, T. & Visser, M. J. 1984. Reactivation surfaces in subtidal channel deposits, Oosterschelde, south-west Netherlands. Journal of Sedimentary Petrology 54, 811–24.Google Scholar
DeRaaf, J. F. M. & Boersma, J. R. 1971. Tidal deposits and their sedimentary structures. Geologie en Mijnbouw 50, 479504.Google Scholar
Ferguson, J., Bubela, B. & Davies, P. J. 1978. Synthesis and possible mechanism for formation of radial carbonate ooids. Chemical Geology 22, 285308.CrossRefGoogle Scholar
Gygi, R. A. 1981. Oolitic iron formations: marine or not marine? Eclogae Geologicae Helvetiae 74, 233–54.Google Scholar
Harder, H. 1978. Synthesis of iron layer silicate minerals under natural conditions. Clays and Clay Minerals 26, 6572.CrossRefGoogle Scholar
Harder, H. 1987. Mineral formation in hydroxide gels for understanding sedimentary iron ore genesis. Geological Society International Symposium on Phanerozoic Ironstones, Sheffield (Abstract).Google Scholar
Kimberley, M. M. 1979. Origin of oolitic iron formations. Journal of Sedimentary Petrology 49, 111–31.Google Scholar
Kimberley, M. M. 1983. Ferruginous ooids. In Coated Grains (ed. Peryt, T. M.), pp. 100–6. Berlin, Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Lamplugh, G. W. 1922. On the junction of Gault and Lower Greensand near Leighton Buzzard (Bedford shire). Quarterly Journal of the Geological Society of London 78, 180.CrossRefGoogle Scholar
Markun, C. D. & Randazzo, A. F. 1980. Sedimentary structures in the Gunflint Iron Formation, Schreiber Beach, Ontario. Precambrian Research 12, 287310.CrossRefGoogle Scholar
Rawson, P. F., Curry, D., Dilley, F. C., Hancock, J. M., Kennedy, W. J., Neale, J. W., Wood, C. J. & Woorsam, B. C. 1978. A Correlation of Cretaceous Rocks in the British Isles. Geological Society of London Special Report no. 9.Google Scholar
Rohrlick, V. 1974. Microstructure and microchemistry of iron ooliths. Mineralium Deposits 9, 133–42.Google Scholar
Schiavon, N. 1987. Goethitic ooids in the foresets of a cross-stratified tidal sandwave (Early Cretaceous, southern England). 8th IAS Regional Meeting of Sedimentology, Tunis (Abstracts, p. 443).Google Scholar
Taylor, J. H. 1949. Petrology of the Northampton Sand Ironstone Formation. Memoirs of the Geological Survey of Great Britain, 111 pp.Google Scholar
Teyssen, T. A. L. 1984. Sedimentology of the Minette oolitic ironstones of Luxembourg and Lorraine: a Jurassic subtidal sandwave complex. Sedimentology 31, 195211.CrossRefGoogle Scholar
Vernet, J. P. & Ferrari, J. M. 1969. Ultrastructure des oolithes ferrugineuses du Callovian du Jura meridional. Compte Rendu des Seances de la Societe' de Physique et d&histoire Naturelle de Geneve NS4, 3841.Google Scholar
Walker, R. G. 1984. Shelf and shallow marine sands. In Facies Models, 2nd ed. (ed. Walker, R. G.), pp. 141–70. Toronto: Geoscience Canada Reprint Series.Google Scholar