Article contents
Insights into a million-year-scale Rhenohercynian carbonate platform evolution through a multi-disciplinary approach: example of a Givetian carbonate record from Belgium
Published online by Cambridge University Press: 30 May 2016
Abstract
In this paper we formulate answers to three important questions related to Givetian carbonate records and their use for reconstructing million-year-scale past palaeoenvironmental changes. First, we provide detailed illustrations of the fascinating diversity that shaped a significant shallow reefal platform during early to late Givetian time in the Rhenohercynian Ocean; secondly we improve the sedimentological model of the extensive Givetian carbonate platform in the Dinant Basin; and thirdly we evaluate the application of magnetic susceptibility as a tool for long-term trend correlations and palaeoenvironmental reconstructions. These goals are reached by making a sedimentological, geophysical and geochemical study of the La Thure section. Through the early–late Givetian interval we discerned 18 microfacies ranging from a homoclinal ramp to a discontinuously rimmed shelf and then a drowning shelf. The comparison of these sedimentological results with those published for the south of the Dinant Syncline allowed us to provide an up to date model of the vertical and lateral environmental development of one of the largest Givetian carbonate platforms in Europe. This comparison also increased the knowledge on the distribution of facies belts in the Dinant Basin and allowed us to highlight the Taghanic Event. Palaeoredox proxies reveal a substantial change in the oxygenation level, from oxygen-depleted to more oxic conditions, between middle and late Givetian time. We demonstrated the relationship between variation in magnetic susceptibility values and proxies for siliciclastic input (such as Si, Al). The La Thure section is considered a key section for the understanding of internal shelf settings bordering Laurussia's southeastern margin.
- Type
- Original Articles
- Information
- Copyright
- Copyright © Cambridge University Press 2016
References
- 8
- Cited by