Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-02T03:40:33.863Z Has data issue: false hasContentIssue false

Petrogenesis of albite-rich mid- to late Proterozoic tephra-fall deposits (‘brown beds’)

Published online by Cambridge University Press:  16 June 2008

RICHARD A. BATCHELOR*
Affiliation:
School of Geography & Geosciences, University of St Andrews, St Andrews, Fife KY16 9AL, Scotland, UK
ANTHONY R. PRAVE
Affiliation:
School of Geography & Geosciences, University of St Andrews, St Andrews, Fife KY16 9AL, Scotland, UK
GRAHAME J. H. OLIVER
Affiliation:
School of Geography & Geosciences, University of St Andrews, St Andrews, Fife KY16 9AL, Scotland, UK
ANDREW S. RAEBURN
Affiliation:
School of Geography & Geosciences, University of St Andrews, St Andrews, Fife KY16 9AL, Scotland, UK 40 Main Street, Methven, Perthshire PH1 3PU, Scotland, UK
*
Author for correspondence: rab@st-andrews.ac.uk

Abstract

The discovery of volcanogenic ‘brown beds’ in Dalradian and Torridonian (Sleat Group and Diabaig Group) sequences in Scotland has raised questions about their origin and provenance. New discoveries of a grey facies cognate to the ‘brown beds’ have led to an hypothesis which proposes that these beds originated as tephra-fall deposits of intermediate to mafic composition. Subsequent prehnite–pumpellyite- and greenschist-facies metamorphism generated an albite–chlorite–muscovite–quartz–calcite assemblage. Recent sub-aerial weathering selectively dissolved interstitial calcite and oxidized iron, which left an albite-rich ‘brown bed’ with a porous saccharoidal texture. Field relationships and mineralogy support their origin as tephra-fall deposits and their widespread occurrence suggests they are not localized phenomena. Crucially, the weathered ‘brown beds’ point to the existence of otherwise cryptic grey metamorphosed tuffs which tend to blend in with their host metasediments.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amor, K. Hesselbo, S. P., Porcelli, D., Thackrey, S. & Parnell, J. 2008. A Precambrian proximal ejecta blanket from Scottland. Geology 36, 303–6.CrossRefGoogle Scholar
Anderton, R. 1985. Sedimentation and tectonics in the Scottish Dalradian. Scottish Journal of Geology 21, 407–36.CrossRefGoogle Scholar
Batchelor, R. A. 2004 a. Air-fall tuffs in the Southern Highland Group, Dalradian Supergroup, at Birnam, Perthshire. Scottish Journal of Geology 40, 6772.CrossRefGoogle Scholar
Batchelor, R. A. 2004 b. More air-fall tuffs from the Southern Highland Group, Dalradian Supergroup, Scotland. Scottish Journal of Geology 40, 181–4.CrossRefGoogle Scholar
Batchelor, R. A. 2005. Tephra-fall deposits in the Sleat Group (Torridonian), Isle of Skye, Scotland. Geological Magazine 142, 209–15.CrossRefGoogle Scholar
Blenkinsop, T. G. 1988. Definition of low-grade metamorphic zones using illite crystallinity. Journal of Metamorphic Geology 6, 623–36.CrossRefGoogle Scholar
Cawood, P. A., Nemchin, A. A., Smith, M. & Loewy, S. 2003. Source of the Dalradian Supergroup constrained by U–Pb dating of detrital zircon and implications for the East Laurentian margin. Journal of the Geological Society, London 160, 231–46.CrossRefGoogle Scholar
Cawood, P. A., Nemchin, A. A., Strachan, R. A., Prave, A. R. & Krabbendam, M. 2007. Sedimentary basin and detrital zircon record along East Laurentia and Baltica during assembly and breakup of Rodinia. Journal of the Geological Society, London 164, 257–75.CrossRefGoogle Scholar
Crane, A. 2002. Geology of the Glen Shee district. Memoir of the British Geological Survey, Sheet 56W (Scotland). H.M.S.O.Google Scholar
Coombs, D. S. 1954. The nature and alteration of some Triassic sediments from Southland, New Zealand. Transactions of the Royal Society of New Zealand 82, 65109.Google Scholar
Dalziel, I. W. D. & Soper, N. J. 2001. Neoproterozoic extension on the Scottish promontory of Laurentia: palaeogeographic and tectonic implications. Journal of Geology 109, 299317.CrossRefGoogle Scholar
Deer, W. A., Howie, R. A. & Zussman, J. 1992. An Introduction to the Rock-Forming Minerals. 2nd edition. Longman Scientific & Technical, 696 pp.Google Scholar
de la Roche, H., Leterrier, J., Grand Claude, P. & Marchal, M. 1980. A classification of volcanic and plutonic rocks using R1-R2 diagrams and major element analyses – its relationships with current nomenclature. Chemical Geology 29, 183210.CrossRefGoogle Scholar
Dempster, T. J., Rogers, G., Tanner, P. W. G., Bluck, B. J., Muir, R. J., Redwood, S. D., Ireland, T. R. & Paterson, B. A. 2002. Timing and deposition, orogenesis and glaciation within the Dalradian rocks of Scotland; constraints from U–Pb ages. Journal of the Geological Society, London 159, 8394.CrossRefGoogle Scholar
Fisher, R. V. & Schmincke, H. U. 1984. Pyroclastic Rocks. Berlin: Springer-Verlag, 472 pp.CrossRefGoogle Scholar
Graham, C. M. 1986. Petrochemistry and tectonic significance of Dalradian metabasaltic rocks of the SW Scottish Highlands. Journal of the Geological Society, London 132, 6184.CrossRefGoogle Scholar
Graham, C. M., Greig, K. M., Sheppard, S. M. F. & Turi, B. 1983. Genesis and mobility of the H2O–CO2 fluid phase during regional greenschist and epidote amphibolite facies metamorphism: a petrological and stable isotope study in the Scottish Dalradian. Journal of the Geological Society, London 140, 577–99.CrossRefGoogle Scholar
Gulbrandsen, R. A. & Cressman, E. R. 1960. Analcime and albite in altered Jurassic tuffs in Idaho and Wyoming. Journal of Geology 68, 458–64.CrossRefGoogle Scholar
Gunn, W., Clough, C. T. & Hill, J. B. 1897. The Geology of Cowal. Memoir of the Geological Survey of Great Britain.Google Scholar
Halliday, A. N., Graham, C. M., Aftalion, M. & Dykmore, P. 1989. The depositional age of the Dalradian Supergroup: U–Pb and Sm–Nd isotopic studies of the Tayvallich Volcanics, Scotland. Journal of the Geological Society, London 146, 36.CrossRefGoogle Scholar
Halverson, G. P., Hoffman, P. F., Schrag, D. P., Maloof, A. C. & Rice, A. H. N. 2005. Toward a Neoproterozoic composite carbon-isotope record. Geological Society of America Bulletin 117, 11811207.CrossRefGoogle Scholar
Harris, A. L. 1972. The Dalradian rocks at Dunkeld, Perthshire. Bulletin of the Geological Survey of Great Britain 38, 110.Google Scholar
Harris, A. L., Haselock, P. J., Kennedy, M. J. & Mendum, J. R. 1994. The Dalradian Supergroup in Scotland, Shetland and Ireland. In A Revised Correlation of Precambrian Rocks in the British Isles (eds Gibbons, W. & Harris, A. L.), pp. 3353. Geological Society of London, Special Report no. 22.CrossRefGoogle Scholar
Iijima, A. 1978. Occurrence of natural zeolites in marine environments. In Natural Zeolites: occurrence, properties, uses (eds Sand, L. B. & Mumpton, F. A.), pp. 175–98. New York: Pergamon Press.Google Scholar
Johnson, M. R. W., Kelley, S. P., Oliver, G. J. H. & Winter, D. A. 1985. Thermal effects amd timing of thrusting in the Moine Thrust zone. Journal of the Geological Society, London 142, 863–73.CrossRefGoogle Scholar
Kinnaird, T. C., Prave, A. R., Kirkland, C. L., Horstwood, M., Parrish, R. & Batchelor, R. A. 2007. The late Mesoproterozoic–early Neoproterozoic tectonostratigraphic evolution of NW Scotland: the Torridonian revisited. Journal of the Geological Society, London 164, 541–51.CrossRefGoogle Scholar
Lawson, D. E. 1972. Torridonian volcanic sediments. Scottish Journal of Geology 8, 345–62.CrossRefGoogle Scholar
Leichmann, J., Broska, I. & Zachovalová, K. 2003. Low-grade metamorphic alteration of feldspar minerals. Terra Nova 15, 104–8.CrossRefGoogle Scholar
Leitch, E. C. 1981. Quartz-albite rocks of ash-fall origin. Geological Magazine 118, 83–8.CrossRefGoogle Scholar
Oliver, G. J. H., Smellie, J. L., Thomas, L. J., Casey, D. M., Kemp, A. E. S., Evans, L. J., Baldwin, J. R. & Hepworth, B. C. 1984. Early Palaeozoic metamorphic history of the Midland Valley, Southern Uplands–Longford–Down massif and the Lake District, British Isles. Transactions of the Royal Society of Edinburgh: Earth Sciences 75, 245–58.CrossRefGoogle Scholar
Pickett, E. A., Hyslop, E. K. & Petterson, M. G. 2006. The Green Beds of the SW Highlands: deposition and origin of a basic igneous-rich sedimentary sequence in the Dalradian Supergroup of Scotland. Scottish Journal of Geology 42, 4357.CrossRefGoogle Scholar
Prave, A. R. 1999. The Neoproterozoic Dalradian Supergroup of Scotland: an alternative hypothesis. Geological Magazine 136, 609–17.CrossRefGoogle Scholar
Rainbird, R. H., Hamilton, M. A. & Young, G. M. 2001. Detrital zircon geochronology and provenance of the Torridonian, NW Scotland. Journal of the Geological Society, London 158, 1527.CrossRefGoogle Scholar
Rollinson, H. 1993. Using Geochemical Data. Longman, 352 pp.Google Scholar
Sanders, I. S. & Johnston, J. D. 1989. The Torridonian Stac Fada Member: an extrusion of fluidised peperite? Transactions of the Royal Society of Edinburgh: Earth Sciences 80, 14.CrossRefGoogle Scholar
Sassi, F. P. & Scolari, A. 1974. The b0 value of the potassic white micas as a barometric indicator in low-grade metamorphism of pelitic schists. Contributions to Mineralogy and Petrology 45, 143–52.CrossRefGoogle Scholar
Saunders, A. D. & Tarney, J. 1984. Geochemical characteristics of basaltic volcanism within back-arc basins. In Marginal basin geology (eds Kokelaar, B. P. & Howells, M. F.), pp. 5976. Geological Society of London, Special Publication no. 16.Google Scholar
Smith, J. V. 1974. Feldspar Minerals. Springer-Verlag.Google Scholar
Soper, N. J. 1994. Neoproterozoic sedimentation on the northeast margin of Laurentia and the opening of Iapetus. Geological Magazine 131, 291–9.CrossRefGoogle Scholar
Sun, S. S. 1980. Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean islands and island arcs. Philosophical Transactions of the Royal Society A297, 409–45.Google Scholar
Thompson, A. B. 1974. The instability of feldspar in metamorphism. In The Feldpars (eds Mackenzie, W. S. & Zussman, J.), pp. 645–72. Manchester: Manchester University Press.Google Scholar
Utada, M. 2001. Zeolites in burial metamorphism and low-grade metamorphic rocks. In Natural Zeolites: occurrence, properties, applications (eds Bish, D. L. & Ming, D. W.), pp. 277304. Reviews in Mineralogy and Geochemistry. Washington: Mineralogical Society of America.CrossRefGoogle Scholar
van de Kamp, P. C. 1970. The Green Beds of the Scottish Dalradian series: geochemistry, origin and metamorphism of mafic sediments. Journal of Geology 78, 281303.CrossRefGoogle Scholar
Weber, K. 1972. Kristallinität des Illits in Tonschiefern und andere Kriterien schwacher metamorphose im nordöstlichen Rheinischen Schiferegebirge. Neues Jahrbuch für Geologie und Palaeontologie Abhandlungen 141, 333–63.Google Scholar
Wilson, M. 1989. Igneous Petrogenesis. London: Chapman & Hall, 466 pp.CrossRefGoogle Scholar
Young, G. M. 1999. Some aspects of the geochemistry, provenance and palaeoclimatology of the Torridonian of NW Scotland. Journal of the Geological Society London 156, 1097–11.CrossRefGoogle Scholar