Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-08T12:26:25.943Z Has data issue: false hasContentIssue false

Tectonic evolution of the northern Verkhoyansk Fold-and-Thrust Belt: insights from palaeostress analysis and U–Pb calcite dating

Published online by Cambridge University Press:  21 July 2022

Elena A Pavlovskaia*
Affiliation:
Institute of Earth Sciences, St Petersburg State University, 7/9 University Nab., St Petersburg, 199034, Russia
Andrey K Khudoley
Affiliation:
Institute of Earth Sciences, St Petersburg State University, 7/9 University Nab., St Petersburg, 199034, Russia Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences, Lermontova st. 128, Irkutsk, 664033, Russia
Jonas B Ruh
Affiliation:
Department of Earth Sciences, Structural Geology and Tectonics Group, Geological Institute, ETH Zürich, Zürich, Switzerland
Artem N Moskalenko
Affiliation:
Institute of Earth Sciences, St Petersburg State University, 7/9 University Nab., St Petersburg, 199034, Russia
Marcel Guillong
Affiliation:
Department of Earth Sciences, Structural Geology and Tectonics Group, Geological Institute, ETH Zürich, Zürich, Switzerland
Sergey V Malyshev
Affiliation:
Institute of Earth Sciences, St Petersburg State University, 7/9 University Nab., St Petersburg, 199034, Russia Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences, Lermontova st. 128, Irkutsk, 664033, Russia
*
Author for correspondence: Elena A Pavlovskaia, Email: pavlovskaia.elena@gmail.com

Abstract

A combined structural and geochronological study was carried out to identify the tectonic evolution of the northern Verkhoyansk Fold-and-Thrust Belt, formed on the east margin of the Siberian Craton during late Mesozoic collision. Fault and fold geometries and kinematics were used for palaeostress reconstruction along the Danil and Neleger rivers cross-cutting the central and western parts of the Kharaulakh segment of the northern Verkhoyansk. Three different stress fields (thrust, normal and strike-slip faulting) were identified after separation from heterogeneous fault-slip data. Thrust and normal faulting stress fields were found in both areas, whereas a strike-slip faulting stress field was only found in Neoproterozoic rocks of the Neleger River area. U–Pb laser ablation – inductively coupled plasma – mass spectrometry (LA-ICP-MS) dating of calcite slickenside samples reveals the following succession of major deformation events across the northern Verkhoyansk: (i) The oldest tectonic event corresponding to the strike-slip faulting stress field with NE–SW-trending compression axis is Early Permian (Cisuralian, 284 ± 7 Ma) and likely represents a far-field response to the late Palaeozoic collision of the Kara terrane with the northern margin of the Siberian Craton. (ii) A slickenfibrous calcite age of 125 ± 4 Ma is attributed to the Early Cretaceous compression event, when the fold-and-thrust structure was formed. (iii) U–Pb slickenfibre calcite ages of 76–60 Ma estimate the age of a Late Cretaceous – Palaeocene compression event, when thrusts were reactivated. Slickensides related to both (ii) and (iii) compressional tectonic events formed by similar stress fields with W–E-trending compression axes. (iv) From the Palaeocene onwards, extensional tectonics with approximately W–E extension predominated.

Type
ABSOLUTE DATING OF FAULTS AND FRACTURES
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afanasenkov, AP, Nikishin, AM, Unger, AV, Bordunov, SI, Lugovaya, OV, Chikishev, AA and Yakovishina, EV (2016) The tectonics and stages of the geological history of the Yenisei–Khatanga Basin and the conjugate Taimyr Orogen. Geotectonics 50, 161–78. doi: 10.1134/S0016852116020023.CrossRefGoogle Scholar
Akinin, VV, Miller, EL, Toro, J, Prokopiev, AV, Gottlieb, ES, Pearcey, S, Polzunenkov, GO and Trunilina, VA (2020) Episodicity and the dance of late Mesozoic magmatism and deformation along the northern circum-Pacific margin: north-eastern Russia to the Cordillera. Earth-Science Reviews 208, 103272. doi: 10.1016/j.earscirev.2020.103272.CrossRefGoogle Scholar
Alkhovik, TS and Baranov, VV (2001) Stratigraphy of the Lower Devonian of Eastern Yakutia (North-East of Russia). Yakutsk: Yakutian branch of SB RAS Publishing House, 147 pp. (in Russian).Google Scholar
Allmendinger, RW, Cardozo, NC and Fisher, D (2012) Structural Geology Algorithms: Vectors & Tensors. Cambridge: Cambridge University Press, 313 pp. doi: 10.1017/CBO9780511920202.Google Scholar
Amato, JM, Toro, J, Akinin, VV, Hampton, BA, Salnikov, AS and Tuchkova, MI (2015) Tectonic evolution of the Mesozoic South Anyui suture zone, eastern Russia: a critical component of palaeogeographic reconstructions of the Arctic region. Geosphere 11, 135. doi: 10.1130/GES01165.1.CrossRefGoogle Scholar
Angelier, J (1984) Tectonic analysis of fault slip data sets. Journal of Geophysical Research 89, 5835–48. doi: 10.1029/JB089iB07p05835.CrossRefGoogle Scholar
Beaudoin, N, Lacombe, O, Roberts, NMW and Koehn, D (2018) U-Pb dating of calcite veins reveals complex stress evolution and thrust sequence in the Bighorn Basin, Wyoming, USA. Geology 46, 1015–18. doi: 10.1130/G45379.1.CrossRefGoogle Scholar
Beaudoin, NE, Labeur, A, Lacombe, O, Koehn, D, Billi, A, Hoareau, G, Boyce, A, John, CM, Marchegiano, M, Roberts, NM, Millar, IL, Claverie, F, Pecheyran, C and Callot, J-P (2020) Regional-scale paleofluid system across the Tuscan Nappe–Umbria–Marche Apennine Ridge (northern Apennines) as revealed by mesostructural and isotopic analyses of stylolite–vein networks. Solid Earth 11, 1617–41. doi: 10.5194/se-11-1617-2020.CrossRefGoogle Scholar
Bidzhiev, RA, Gorshkova, ER and Leonov, BN (1979) State Geological Map of the USSR, Scale 1: 200 000. Verkhoyanskaya Series. Sheet R-52-III, IV. Explanatory Note. Moscow: Aerogeology, 72 pp. (in Russian).Google Scholar
Bidzhiev, RA, Groshin, SI, Gorshkova, ER and Gogina, NI (1977) State Geological Map of the USSR, scale 1: 200 000. Nizhnelenskaya Series. Sheet R-52-VII, VIII. Explanatory Note. Moscow: Aerogeology, 81 pp. (in Russian).Google Scholar
Bons, PD, Elburg, MA and Gomez-Rivas, E (2012) A review of the formation of tectonic veins and their microstructures. Journal of Structural Geology 43, 3362. doi: 10.1016/j.jsg.2012.07.005.CrossRefGoogle Scholar
Bowring, SA, Grotzinger, JP, Isachsen, CE, Knoll, AH, Pelechaty, SM and Kolosov, P (1993) Calibrating rates of early Cambrian evolution. Science 261, 1293–98. doi: 10.1126/science.11539488.CrossRefGoogle ScholarPubMed
Brandes, C, Piepjohn, K, Dieter, F, Sobolev, N and Gaedicke, C (2015) The Mesozoic–Cenozoic tectonic evolution of the New Siberian Islands, NE Russia. Geological Magazine 152, 480–91. doi: 10.1017/S0016756814000326.CrossRefGoogle Scholar
Delvaux, D and Sperner, B (2003) Stress tensor inversion from fault kinematic indicators and focal mechanism data: the TENSOR program. In New Insights into Structural Interpretation and Modelling (ed Nieuwland, D), pp. 75100. Geological Society of London, Special Publication no. 212.Google Scholar
Drachev, SS (2011) Tectonic setting, structure and petroleum geology of the Siberian Arctic offshore sedimentary basins. Geological Society of London, Memoirs 35, 369–94. doi: 10.1144/M35.25.CrossRefGoogle Scholar
Drachev, SS and Shkarubo, SI (2018) Tectonics of the Laptev Shelf, Siberian Arctic. In Circum-Arctic Lithosphere Evolution (eds Pease, V and Coakley, B), pp. 263–83. Geological Society of London, Special Publication no. 460. doi: 10.1144/sp460.15.Google Scholar
Ershova, VB, Khudoley, AK and Prokopiev, AV (2014) Early Visean paleogeography of northern Siberia: new evidence of rift to drift transition along the eastern margin of Siberia. Journal of Asian Earth Sciences 91, 206–17. doi: 10.1016/j.jseaes.2014.05.017.CrossRefGoogle Scholar
Franke, D, Krüger, F and Klinge, K (2000) Tectonics of the Laptev Sea – Moma ‘Rift’ region: investigation with seismologic broadband data. Journal of Seismology 4, 99116. doi: 10.1023/A:1009866032111.CrossRefGoogle Scholar
Galabala, PO (1971) On the orogenesis in the western Verkhoyansk region. In Mesozoic Tectogenesis (ed Shilo, NA), pp. 6168. Magadan: North-East Interdisciplinary Scientific Research Institute Press (in Russian).Google Scholar
Gertseva, MV, Borisova, TP, Chibisova, ED, Emelyanova, EN, Cherenkov, VG, Ignateva, LM, Kotov, IA, Istoshina, EB and Fedoseev, IA (2016) Geological Map of Russian Federation, Explanatory Note, scale 1:1 000 000 (third generation). R-52 (Tiksi). St Petersburg: VSEGEI, 312 pp. (in Russian).Google Scholar
Gonchar, VV (1998) The stress field of the Kharaulakh Range and the problem of the origin of the Verkhoyansk Fold-and-Thrust Belt. Bulletin of the Moscow Society of Naturalists 73, 1826 (in Russian).Google Scholar
Gonchar, VV (2016) Review of data on the stress fields of the mesozoids of Northeast Asia, obtained by the kinematic method. Geophysical Journal 38, 2657 (in Russian).Google Scholar
Grinenko, VS, Yuganova, LA, Trushchelev, AM, Malanin, YA, Smetannikova, LI, Knyazev, VG, Prokopiev, AV, Kazakova, GG and Protopopov, RI (2013) Geological Map of Russian Federation, Scale 1:1 000 000 (Third Generation). R-51 (Dzharzhan). St. Petersburg: VSEGEI, 399 pp. (in Russian).Google Scholar
Guillong, M, Wotzlaw, J-F, Looser, N and Laurent, O (2020) Evaluating the reliability of U–Pb laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) carbonate geochronology: matrix issues and a potential calcite validation reference material. Geochronology 2, 155–67. doi: 10.5194/gchron-2-155-2020.CrossRefGoogle Scholar
Guiraud, M, Laborde, O and Philip, H (1989) Characterization of various types of deformation and their corresponding deviatoric stress tensors using microfault analysis. Tectonophysics 170, 289316. doi: 10.1016/0040-1951(89)90277-1.CrossRefGoogle Scholar
Gusev, GS (1979) Folded Structures and Faults of the Verkhoyansk-Kolyma System of Mesozoides. Moscow: Nauka, 208 pp. (in Russian).Google Scholar
Gushchenko, OI (1979) The method of stress fields reconstruction based on the fault kinematic analysis. In Stress and Strain Fields in the Lithosphere (eds Grigoriev, AS and Osokina, DN), pp. 725. Moscow: Science (in Russian).Google Scholar
Hansman, RJ, Albert, R, Gerdes, A and Ring, U (2018) Absolute ages of multiple generations of brittle structures by U-Pb dating of calcite. Geology 46, 207–10. doi: 10.1130/G39822.1.CrossRefGoogle Scholar
Hoareau, G, Crognier, N, Lacroix, B, Aubourg, C, Roberts, NW, Niemi, N, Branellec, M, Beaudoin, NE and Suárez Ruiz, I (2021) Combination of Δ47 and U–Pb dating in tectonic calcite veins unravel the last pulses related to the Pyrenean Shortening (Spain). Earth and Planetary Science Letters 553, 116636. doi: 10.1016/j.epsl.2020.116636.CrossRefGoogle Scholar
Imaev, VS, Imaeva, LP, Smekalin, OP, Chipizubov, AV, Ovsyuchenko, AN and Kolodeznikov, II (2018) Neotectonics of the Kharaulakh sector of the Laptev Shelf. Russian Geology and Geophysics 59, 813–26. doi: 10.1016/j.rgg.2018.07.007.CrossRefGoogle Scholar
Imaeva, LP, Gusev, GS and Imaev, VS (2019) Dynamics of the relief and seismotectonic activity of the modern structures in the delta of the river Lena. Geotectonics 53, 588600 (in Russian).CrossRefGoogle Scholar
Khabarov, EM and Izokh, OP (2014) Sedimentology and isotope geochemistry of Riphean carbonates in the Kharaulakh Range of northern East Siberia. Russian Geology and Geophysics 55, 629–48. doi: 10.1016/j.rgg.2014.05.008.CrossRefGoogle Scholar
Khudoley, A, Chamberlain, K, Ershova, V, Sears, J, Prokopiev, A, Maclean, J, Kazakova, G, Malyshev, S, Molchanov, A, Kullerud, K, Toro, J, Miller, E, Veselovskiy, R, Li, A and Chipley, D (2015) Proterozoic supercontinental restorations: constraints from provenance studies of Mesoproterozoic to Cambrian clastic rocks, eastern Siberian Craton. Precambrian Research 259, 7894. doi: 10.1016/j.precamres.2014.10.003.CrossRefGoogle Scholar
Khudoley, AK and Guriev, GA (2003) Influence of syn-sedimentary faults on orogenic structure: examples from the Neoproterozoic–Mesozoic east Siberian passive margin. Tectonophysics 365, 2343. doi: 10.1016/S0040-1951(03)00016-7.CrossRefGoogle Scholar
Khudoley, AK and Prokopiev, AV (2007) Defining the eastern boundary of the North Asian craton from structural and subsidence history studies of the Verkhoyansk Fold-and-Thrust Belt. In Whence the Mountains? Enquiries into the Evolution of Orogenic Belts: A Volume in Honor of Raymond A. Price (eds Sears, J, Harms, T and Evenchick, C), pp. 391410. Geological Society of America, Special Paper 433. doi: 10.1130/2007.2433(19).Google Scholar
Khudoley, AK, Rainbird, RH, Stern, RA, Kropachev, AP, Heaman, LM, Zanin, AM, Podkovyrov, VN, Belova, VN and Sukhorukov, VI (2001) Sedimentary evolution of the Riphean–Vendian basin of southeastern Siberia. Precambrian Research 111, 129–63. doi: 10.1016/S0301-9268(01)00159-0.CrossRefGoogle Scholar
Khudoley, AK, Verzhbitsky, VE, Zastrozhnov, DA, O’Sullivan, P, Ershova, VB, Proskurnin, VF, Tuchkova, MI, Rogov, MA, Kyser, TK, Malyshev, SV and Schneider, GV (2018) Late Paleozoic – Mesozoic tectonic evolution of the Eastern Taimyr – Severnaya Zemlya Fold and Thrust Belt and adjoining Yenisey-Khatanga Depression. Journal of Geodynamics 119, 221–41. doi: 10.1016/j.jog.2018.02.002.CrossRefGoogle Scholar
Kochnev, BB, Kuznetsov, AB, Sitkina, DR and Kramchaninov, AY (2021) Sr isotope chemostratigraphy and Pb–Pb age of the Riphean carbonate deposits of the Kharaulakh Uplift (Northeastern margin of the Siberian Platform). Russian Geology and Geophysics 62, 377–87. doi: 10.2113/RGG20194076.CrossRefGoogle Scholar
Kontorovich, VA, Kontorovich, AE, Gubin, IA, Zoteev, AM, Lapkovsky, VV, Malyshev, NA, Soloviev, MV and Fradkin, GS (2013) The Neoproterozoic–Phanerozoic section of the Anabar–Lena province: structural framework, geological model, and petroleum potential. Russian Geology and Geophysics 54, 980–96. doi: 10.1016/j. rgg.2013.07.014.CrossRefGoogle Scholar
Kossovskaya, AG (1962) Mineralogy of the Mesozoic Clastic Complex of the Vilyui Basin and the Western Verkhoyansk Region. Moscow: Academy of Science, 236 pp. (in Russian).Google Scholar
Kurapov, M, Ershova, V, Khudoley, A, Luchitskaya, M, Makariev, A, Makarieva, E and Vishnevskaya, I (2021) Late Palaeozoic magmatism of Northern Taimyr: new insights into the tectonic evolution of the Russian High Arctic. International Geology Review 63, 19902012. doi: 10.1080/00206814.2020.1818300.CrossRefGoogle Scholar
Lacombe, O (2012) Do fault slip data inversions actually yield “paleostresses” that can be compared with contemporary stresses? A critical discussion. Comptes Rendus Geoscience 344, 159–73. doi: 10.1016/j.crte.2012.01.006.CrossRefGoogle Scholar
Lacombe, O, Beaudoin, NE, Hoareau, G, Labeur, A, Pecheyran, C and Callot, J-P (2021) Dating folding beyond folding, from layer-parallel shortening to fold tightening, using mesostructures: lessons from the Apennines, Pyrenees, and Rocky Mountains. Solid Earth 12, 2145–57. doi: 10.5194/se-12-2145-2021.CrossRefGoogle Scholar
Layer, PW, Newberry, R, Fujita, K, Parfenov, L, Trunilina, V and Bakharev, A (2001) Tectonic setting of the plutonic belts of Yakutia, Northeast Russia, based on 40Ar/39Ar geochronology and trace element geochemistry. Geology 29, 167–70. doi: 10.1130/0091-7613(2001)029<0167:TSOTPB>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Liesa, CL and Lisle, RJ (2004) Reliability of methods to separate stress tensors from heterogeneous fault-slip data. Journal of Structural Geology 26, 559–72. doi: 10.1016/j.jsg.2003.08.010.CrossRefGoogle Scholar
Looser, N, Madritsch, H, Guillong, M, Laurent, O, Wohlwend, S and Bernasconi, SM (2021) Absolute age and temperature constraints on deformation along the basal décollement of the Jura Fold-and-Thrust belt from carbonate U-Pb dating and clumped isotopes. Tectonics 40, 116. doi: 10.1029/2020TC006439.CrossRefGoogle Scholar
Malyshev, SV, Khudoley, AK, Glasmacher, UA, Kazakova, GG and Kalinin, MA (2018) Constraining age of deformation stages in the South-Western part of Verkhoyansk Fold-and-Thrust Belt by apatite and zircon fission-track analysis. Geotectonics 52, 634–46. doi: 10.1134/S0016852118060055.CrossRefGoogle Scholar
Malyshev, SV, Khudoley, AK, Prokopiev, AV, Ershova, VB, Kazakova, GG and Terentyeva, LB (2016) Source rocks of Carboniferous-Lower Cretaceous terrigenous sediments of the northeastern Siberian Platform: results of Sm-Nd isotope-geochemical studies. Russian Geology and Geophysics 57, 421–33. doi: 10.1016/j.rgg.2016.03.005.CrossRefGoogle Scholar
Mikulenko, KI, Sitnikov, VS, Skrjabin, RM and Timirshin, KV (1997) Geology and Oil-and-Gas Content in the Arctic Areas of Western Sakha. Yakutsk: Russian Yakutsk Scientific Center Press, 176 pp. (in Russian, with English summary).Google Scholar
Nikishin, AM, Petrov, EI, Cloetingh, S, Malyshev, NA, Morozov, AF, Posamentier, HW, Verzhbitsky, VE, Freiman, SI, Rodina, EA, Startseva, KF and Zhukov, NN (2021) Arctic Ocean mega project: paper 2 – Arctic stratigraphy and regional tectonic structure. Earth-Science Reviews 217, 103581. doi: 10.1016/j.earscirev.2021.103581.CrossRefGoogle Scholar
Nokleberg, WJ (ed) (2010) Metallogenesis and Tectonics of Northeast Asia. US Geological Survey Professional Paper 1765, 626 pp.Google Scholar
Nuriel, P, Wotzlaw, J-F, Ovtcharova, M, Vaks, A, Stremtan, C, Šala, M, Roberts, NMW and Kylander-Clark, ARC (2021) The use of ASH-15 flowstone as a matrix-matched reference material for laser-ablation U−Pb geochronology of calcite. Geochronology, 3, 3547. doi: 10.5194/gchron-3-35-2021.CrossRefGoogle Scholar
Otsubo, M and Yamaji, A (2006) Improved resolution of the multiple inverse method by eliminating erroneous solutions. Computers and Geosciences 32, 1221–27. doi: 10.1016/j.cageo.2005.10.022.CrossRefGoogle Scholar
Pagel, M, Barbin, V, Blanc, P and Ohnenstetter, D (2000) Cathodoluminescence in geosciences. In Application of Cathodoluminescence to Carbonate Diagenesis, pp. 271301. doi: 10.1007/978-3-662-04086-7_11.Google Scholar
Parfenov, LM (1984) Continental Margins and Island Arcs of Mesozoides of North-East Asia. Novosibirsk: Nauka, 192 pp. (in Russian).Google Scholar
Parfenov, LM (1988) Two stages of Mesozoic folding in the northern Verkhoyansk. Russian Geology and Geophysics 4, 310 (in Russian).Google Scholar
Parfenov, LM, Natapov, LM, Sokolov, SD and Tsukanov, NV (1993) Terrane analysis and accretion in North-East Asia. The Island Arc 2, 3554. doi: 10.1111/j.1440-1738.1993.tb00073.x.CrossRefGoogle Scholar
Parfenov, LM, Prokopiev, AV and Gaiduk, VV (1995) Cretaceous frontal thrusts of the Verkhoyansk fold belt, eastern Siberia. Tectonics 14, 342–58. doi: 10.1029/94TC03088.CrossRefGoogle Scholar
Parfenov, LM, Prokopiev, AV and Spector, VB (2001) Relief of the Earth surface and history of its formation. In Tectonics, Geodynamics and Metallogeny of the Territory of the Republic of Sakha (Yakutia) (eds Parfenov, LM and Kuzmin, MI), pp. 1232. Moscow: MAIK Nauka/Interperiodika, (in Russian).Google Scholar
Parrish, RR, Parrish, CM and Lasalle, S (2018) Vein calcite dating reveals Pyrenean orogen as cause of Paleogene deformation in southern England. Journal of the Geological Society 175, 425–42. doi: 10.1144/jgs2017-107.CrossRefGoogle Scholar
Pease, V, Drachev, S, Stephenson, R and Zhang, X (2014) Arctic lithosphere – a review. Tectonophysics 628, 125. doi: 10.1016/j.tecto.2014.05.033.CrossRefGoogle Scholar
Prokopiev, A, Khudoley, A, Egorov, A, Gertseva, M, Afanasieva, E, Sergeenko, A, Ershova, V and Vasiliev, D (2013) Late Cretaceous-Early Cenozoic indicators of continental extension on the Laptev Sea shore (North Verkhoyansk), In 3P Arctic Conference & Exhibition. The Polar Petroleum Potential. October 15–18, 2013. Stavanger, Norway.Google Scholar
Prokopiev, AV, Borisenko, AS, Gamyanin, GN, Pavlova, GG, Fridovsky, VY, Kondrat’eva, LA, Anisimova, GS, Trunilina, VA, Ivanov, AI, Travin, AV, Koroleva, OV, Vasiliev, DA and Ponomarchuk, AV (2018a) Age constraints and tectonic settings of metallogenic and magmatic events in the Verkhoyansk-Kolyma folded area. Russian Geology and Geophysics 59, 1237–53. doi: 10.1016/j.rgg.2018.09.004.CrossRefGoogle Scholar
Prokopiev, AV and Deikunenko, AV (2001) Deformation structures of fold-thrust belt. In Tectonics, Geodynamics and Metallogeny of the Territory of the Republic of Sakha (Yakutia) (eds Parfenov, LM and Kuzmin, MI), pp. 156–98. Moscow: MAIK Nauka/Interperiodika, (in Russian).Google Scholar
Prokopiev, AV, Ershova, VB, Anfinson, O, Stockli, D, Powell, J, Khudoley, AK, Vasiliev, DA, Sobolev, NN and Petrov, EO (2018b) Tectonics of the New Siberian Islands Archipelago: structural styles and low-temperature thermochronology. Journal of Geodynamics 121, 155–84. doi: 10.1016/j.jog.2018.09.001.CrossRefGoogle Scholar
Prokopiev, AV, Ershova, VB and Stockli, DF (2019) First data on (U-Th)/He low-temperature thermochronology of detrital zircons (ZHe) from sedimentary rocks of the southern Prikolyma terrane (Verkhoyansk-Kolyma fold area). Annual Interdisciplinary Tectonic Committee Meeting Extended Abstracts 2, 141–4 (in Russian).Google Scholar
Prokopiev, AV, Ershova, VB and Stockli, DF (2021) Detrital zircon U-Pb data for Jurassic–Cretaceous strata from the south-eastern Verkhoyansk-Kolyma Orogen: correlations to magmatic arcs of the North-East Asia active margin. Minerals 11, 291. doi: 10.3390/min11030291.CrossRefGoogle Scholar
Prokopiev, AV, Khudoley, AK, Koroleva, OV, Kazakova, GG, Lokhov, DK, Malyshev, SV, Zaitsev, AI, Roev, SP, Sergeev, SA, Berezhnaya, NG and Vasiliev, DA (2016) The early Cambrian bimodal magmatism in the northeastern Siberian Craton. Russian Geology and Geophysics 57, 155–75. doi: 10.1016/j.rgg.2016.01.011.CrossRefGoogle Scholar
Prokopiev, AV, Parfenov, LM, Tomshin, MD and Kolodeznikov, II (2001) Sedimentary cover of the Siberian platform and adjacent fold and thrust belts. In Tectonics, Geodynamics and Metallogeny of the Territory of the Republic of Sakha (Yakutia) (eds Parfenov, LM and Kuzmin, MI), pp. 113–55. Moscow: MAIK Nauka/Interperiodika, (in Russian).Google Scholar
Prokopiev, AV, Toro, J, Hourigan, JK, Bakharev, AG and Miller, EL (2009) Middle Paleozoic-Mesozoic boundary of the North Asian craton and the Okhotsk terrane: new geochemical and geochronological data and their geodynamic interpretation. Stephan Mueller Special Publication Series 4, 7184. doi: 10.5194/smsps-4-71-2009.CrossRefGoogle Scholar
Prokopiev, VS, Urzov, AS, Budeleeva, SS, Slastenov, YL and Yuganova, LA (1999) Geological map of Yakutia at scale 1:500,000. The West Verkhoyansk set (19 sheets). St. Petersburg: VSEGEI Press (in Russian).Google Scholar
Ramsay, JG and Huber, M (1987) The Techniques of Modern Structural Geology, 2: Folds and Fractures. London: Academic Press, pp. 305700.Google Scholar
Roberts, NMW, Rasbury, ET, Parrish, RR, Smith, CJ, Horstwood, MSA and Condon, DJ (2017) A calcite reference material for LA-ICP-MS U-Pb geochronology. Geochemistry, Geophysics, Geosystems 18, 2807–14. doi: 10.1002/2016GC006784.CrossRefGoogle Scholar
Shishkin, MA, Sinkova, EA, Sergeev, SA, Lokhov, KI, Snezhko, VV, Kovalenko, EA, Baranov, IV, Yakovlev, RA, Ivanova, EI, Lokhov, DK, Goloudin, RI, Buchnev, IN and Maiskaya, EA (2017) Geochronological Atlas of the Main Structural-Compositional Complexes of Russia (in Russian). https://vsegei.ru/ru/info/geochron-atlas/ (accessed 19 November 2021).Google Scholar
Simon, J (2019) Forty years of paleostress analysis: has it attained maturity? Journal of Structural Geology 125, 124–33. doi: 10.1016/j.jsg.2018.02.011.CrossRefGoogle Scholar
Smeraglia, L, Looser, N, Fabbri, O, Choulet, F, Guillong, M and Bernasconi, SM (2021) U–Pb dating of middle Eocene–Pliocene multiple tectonic pulses in the Alpine foreland. Solid Earth, 12, 2539–51. doi: 10.5194/se-12-2539-2021.CrossRefGoogle Scholar
Sokolov, SD (2010) Tectonics of Northeast Asia: an overview. Geotectonics 44, 493509. doi: 10.1134/S001685211006004X.CrossRefGoogle Scholar
Sokolov, SD, Tuchkova, MI, Ledneva, GV, Luchitskaya, MV, Ganelin, AV, Vatrushkina, EV and Moiseev, AV (2021) Tectonic position of the South Anyui Suture. Geotectonics 55, 697716.CrossRefGoogle Scholar
Sperner, B and Zweigel, P (2010) A plea for more caution in fault–slip analysis. Tectonophysics 482, 2941. doi: 10.1016/j.tecto.2009.07.019.CrossRefGoogle Scholar
Sukhov, SS, Shabanov, YY, Pegel, TV, Saraev, SV, Filippov, YF, Korovnikov, IV, Sundukov, VM, Fedorov, AB, Varlamov, AI, Efimov, AS, Kontorovich, VA and Kontorovich, AE (2016) Stratigraphy of Oil and Gas Basins of Siberia. Cambrian of Siberian Platform. Novosibirsk: IPGG SB RAS, 498 pp. (in Russian with English summary).Google Scholar
Toro, J, Miller, EL, Prokopiev, AV, Zhang, X and Veselovskiy, R (2016) Mesozoic orogens of the Arctic from Novaya Zemlya to Alaska. Journal of the Geological Society 173, 9891006. doi: 10.1144/jgs2016-083.CrossRefGoogle Scholar
Twiss, RJ and Moores, EM (1992) Structural Geology. New York: WH. Freeman and Company, 532 pp.Google Scholar
Vasiliev, DA and Prokopiev, AV (2012) Structure and tectonophysics of the Ust-Olenek fold system (Arctic Yakutia). Science and Education 3, 713 (in Russian).Google Scholar
Vasiliev, DA, Prokopiev, AV, Khudoley, AK, Ershova, VB and Kazakova, GG (2019) Thermochronology of the northern part of the Priverkhoyansk foreland basin and Chekurovka anticline according to the apatite fission track data. In Geology and Mineral Resources of North-East Russia. IX Russian Academic and Research Conference, Transactions 2 (ed Fridovsky, VY), pp. 2023. Yakutsk: North-East Federal University (in Russian).Google Scholar
Vereshchagin, OS, Khudoley, AK, Ershova, VB, Prokopiev, AV and Schneider, GV (2018) Provenance of Jurassic–Cretaceous siliciclastic rocks from the northern Siberian Craton: an integrated heavy mineral study. Journal of Geosciences 63, 199213. doi: 10.3190/jgeosci.264.CrossRefGoogle Scholar
Vermeesch, P (2018) IsoplotR: a free and open toolbox for geochronology. Geoscience Frontiers 9, 1479–93. doi: 10.1016/j.gsf.2018.04.001.CrossRefGoogle Scholar
Vernikovsky, V, Shemin, G, Deev, E, Metelkin, D, Matushkin, N and Pervukhina, N (2018) Geodynamics and oil and gas potential of the Yenisei-Khatanga basin (Polar Siberia). Minerals 8, 510. doi: 10.3390/min8110510.CrossRefGoogle Scholar
Vernikovsky, VA, Vernikovskaya, A, Proskurnin, V, Matushkin, N, Proskurnina, M, Kadilnikov, P, Larionov, A and Travin, A (2020) Late Paleozoic–Early Mesozoic Granite magmatism on the Arctic margin of the Siberian Craton during the Kara-Siberia oblique collision and plume events. Minerals 10, 571. doi: 10.3390/min10060571.CrossRefGoogle Scholar
Vollmer, FW (2015) Orient 3: a new integrated software program for orientation data analysis, kinematic analysis, spherical projections, and Schmidt plots. Geological Society of America, Abstracts with Programs 47, 49.Google Scholar
Yamaji, A (2000) The multiple inverse method: a new technique to separate stresses from heterogeneous fault-slip data. Journal of Structural Geology 22, 441–52. doi: 10.1016/S0191-8141(99)00163-7.CrossRefGoogle Scholar
Zalohar, J and Vrabec, M (2007) Paleostress analysis of heterogeneous fault-slip data: the Gauss method. Journal of Structural Geology 29, 1798–810. doi: 10.1016/j.jsg.2007.06.009.CrossRefGoogle Scholar
Zhang, X, Pease, V, Carter, A, Kostuychenko, S, Suleymanov, A and Scott, R (2018) Timing of exhumation and deformation across the Taimyr fold-thrust belt: insights from apatite fission track dating and balanced cross-sections. In Circum-Arctic Lithosphere Evolution (eds Pease, V and Coakley, B), pp. 315–33. Geological Society of London, Special Publication no. 460. doi: 10.1144/sp460.3.Google Scholar
Supplementary material: PDF

Pavlovskaia et al. supplementary material

Pavlovskaia et al. supplementary material 1

Download Pavlovskaia et al. supplementary material(PDF)
PDF 132.3 KB
Supplementary material: PDF

Pavlovskaia et al. supplementary material

Pavlovskaia et al. supplementary material 2

Download Pavlovskaia et al. supplementary material(PDF)
PDF 496.8 KB
Supplementary material: PDF

Pavlovskaia et al. supplementary material

Pavlovskaia et al. supplementary material 3

Download Pavlovskaia et al. supplementary material(PDF)
PDF 340.2 KB