Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-02T03:17:30.131Z Has data issue: false hasContentIssue false

Transgressions and regressions: a model for the influence of tectonic subsidence, deposition and eustasy, with application to Quaternary and Carboniferous examples

Published online by Cambridge University Press:  01 May 2009

R. E. Ll. Collier
Affiliation:
Department of Earth Sciences, University of Leeds, Leeds LS2 9JT, U.K.
M. R. Leeder
Affiliation:
Department of Earth Sciences, University of Leeds, Leeds LS2 9JT, U.K.
J. R. Maynard
Affiliation:
Department of Earth Sciences, University of Leeds, Leeds LS2 9JT, U.K.

Abstract

The position of a coastline in time and space is determined by (1) the vertical displacement and/or tilting of the depositional surface, (2) the rate of sediment accumulation or erosion across that surface, and (3) variation of sea-level. All three rates of change may vary through time. We present computer simulations of coastline movements that illustrate the interaction of the above variables, with (1) and (2) held at various defined levels whilst (3) is varied according to the late Quaternary glacio-eustatic sea-level curve. The Corinth Canal section in central Greece exposes uplifted late Quaternary coastal transgressive cycles, each of which may be related to a radiometrically dated, c. 100 ka duration, cycle of sea-level change. Observed stratigraphic sequence geometries are predicted by forward modelling based on the known glacio-eustatic history over the last 430 ka. Milankovitch orbital parameters are calculated for the Carboniferous period. The obliquity and precession parameters are found to have been significantly shorter than at present. A simulation is presented of the effects of sea-level changes across low gradient, fluvio-deltaic environments such as existed in northern England and other parts of the Laurentian continental margin during Upper Carboniferous time.

Type
Articles
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Algeo, T. J. & Wilkinson, B. H. 1988. Periodicity of mesoscale Phanerozoic sedimentary cycles and the role of Milankovitch orbital modulation. Journal of Geology 96, 313–22.CrossRefGoogle Scholar
Allen, P. 1964. Sedimentological models. Journal of Sedimentary Petrology 34, 289–93.CrossRefGoogle Scholar
Berger, A. L. 1978. Long-term variations of daily insolation and Quaternary climatic changes. Journal of the Atmospheric Sciences 35, 2362–7.2.0.CO;2>CrossRefGoogle Scholar
Calver, M. A. 1968. Distribution of Westphalian marine fauna in northern England and adjoining areas. Proceedings of the Yorkshire Geological Society 37, 172.CrossRefGoogle Scholar
Chappell, J. 1974. Geology of coral terraces, Huon Peninsula, NewGuinea: a study of Quaternary tectonic movements and sea-level changes. Bulletin of the Geological Society of America 85, 553–70.2.0.CO;2>CrossRefGoogle Scholar
Chappell, J. & Shackleton, N. J. 1986. Oxygen isotopes and sea level. Nature 324, 137–40.CrossRefGoogle Scholar
Coleman, J. M. & Prior, D. B. 1980. Deltaic Sand Bodies. Education Course Notes Series no. 15, American Association of Petroleum Geologists, 171 pp.CrossRefGoogle Scholar
Collier, R. E. Ll. in press. Eustatic and tectonic controls upon Quaternary coastal sedimentation in the Corinth Basin, Greece. Journal ofthe Geological Society of London.CrossRefGoogle Scholar
Crowell, J. C. 1978. Gondwanan glaciation, cyclothems, continentalpositioning, and climate change. American Journal of Science 278,1345–72.CrossRefGoogle Scholar
Crowley, T.J. 1983. The geologic record of climatic change. Reviews of Geophysics and Space Physics 21, 828–77.CrossRefGoogle Scholar
Curray, J. R. 1965. Late Quaternary history, continental shelves of the United States. In The Quaternary of the United States (eds Wright, H. E. and Fry, D. G.), pp. 723–35. Princeton N.J.: Princeton University Press.Google Scholar
Hays, J. D., Imbrie, J. & Shackleton, N. J. 1976.Variations in the Earth's orbit: pacemaker of the Ice Ages. Science 194, 1121–32.CrossRefGoogle ScholarPubMed
Heckel, P. H. 1986. Sea-level curve for Pennsylvanian eustatic marine transgressive-regressive depositional cycles along midcontinent outcrop belt, North America. Geology 14, 330–4.2.0.CO;2>CrossRefGoogle Scholar
Helland-Hansen, W., Kendall, C. G. ST. c., Lerche, I. & Nakayama, K. 1988. A simulation of continental basin margin sedimentation in response to crustal movements, eustatic sea level change, and sediment accumulation rates. Mathematical Geology 20,777802.CrossRefGoogle Scholar
Hubbard, R. J., Pape, J. & Roberts, D. G. 1985. Depositional sequence mapping as a technique to establish tectonic and stratigraphicframework and evaluate hydrocarbon potential on a passive continental margin. In Seismic Stratigraphy II: An Integrated Approach to Hydrocarbon Exploration (eds Berg, O. R. and Woolverton, D. G.), pp. 7991. Tulsa: American Association of Petroleum Geologists.Google Scholar
Imbrie, J., Hays, J. D., Martinson, D. G., McIntyre, A., Mix, A. C., Morley, J. J., Pisias, N. G., Prell, W. L., & Shackleton, N.J., 1984. The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ 18 record. In Milankovitch and Climate, Part 1 (eds Berger, A. L., Imbrie, J., Hays, J., Kukla, G. and Saltzman, B.), pp. 269305. Dordrecht: D. Reidel.Google Scholar
Imbrie, J. & Imbrie, J. Z. 1980. Modelling the climatic response to orbital variations. Science 207, 943–53.CrossRefGoogle ScholarPubMed
Jackson, J. A., Gagnepain, J., Houseman, G., King, G. C. P., Papadimitriou, P., Soufleris, C. & Virieux, J. 1982. Seismicity, normal faulting and the geo-morphological development of the Gulf of Corinth (Greece): the Corinth earthquakes of February and March 1981. Earth & Planetary Science Letters. 57, 377–97.CrossRefGoogle Scholar
Lambeck, K. 1978. The Earth's palaeorotation. In Tidal Friction and the Earth's Rotation (eds P., Brosche and J., Sunderman), pp. 145–53. Berlin, Heidelberg, New York: Springer-Verlag, 241 pp.Google Scholar
Lambeck, K. 1980. The Earth's Variable Rotation: Geophysical Causes and Consequences. Cambridge: Cambridge University Press, 449 pp.Google Scholar
Leeder, M. R. 1988. Recent developments in Carboniferous geology: acritical review with implications for the British Isles and N.W. Europe. Proceedings of t he Geologists' Association 99, 73100.CrossRefGoogle Scholar
Leeder, M. R., Smith, A. B. & Jixiang, Yin 1988. Sedimentology, palaeoecology and palaeoenvironmental evolution of the Lhasa to Golmud Tibet geotraverse. In The 1985 Lhasa to Golmud Tibet Geotraverse (eds Shackleton, R. M. and Wallace, P.), pp. 107–43. RoyalSociety of London.Google Scholar
Leeder, M. R. & Strudwick, A. E. 1987. Delta-marine interactions: a discussion of sedimentary models for Yoredale-type cyclicity in the Dinantian of northern England. In European Dinantian Environments (eds Miller, J. M. Adams, A. E. and Wright, V. P.), pp. 115–30. Chichester: John Wiley & Sons.Google Scholar
Lippolt, H. J., Hess, J. C. & Burger, K. 1984. Isotopische Alter von pyroklastischen Sanidinen aus Kaolin-Kohlentonsteinen als Korrelationsmarken für das mitteleuropäische Oberkarbon. Fortschritte in der Geologie von Rheinland und Westfalen 32, 119–50.Google Scholar
Massari, F. & Parea, G. C. 1988. Progradational gravelbeach sequences in a moderate- to high-energy, micro-tidal marine environment. Sedimentology 35, 881913.CrossRefGoogle Scholar
Nummedal, O., Pilkey, O. H. & Howard, J. D. (eds) 1987. Sea-level Fluctuation and Coastal Evolution. Tulsa: Society of Economic Paleontologists and Mineralogists, 267 pp.CrossRefGoogle Scholar
Pitman, W. C III 1978. Relationship between eustacy and stratigraphic sequences of passive margins. Bulletin of the Geological Society of America 89, 13891403.2.0.CO;2>CrossRefGoogle Scholar
Ramsbottom, W. H. C. 1969. The Namurian of Britain. Compte Rendu 6me Congre's Internationale de Stratigraphie et Géologie du Carbonifère (Sheffield 1967) 1, 71–7.Google Scholar
Read, J. F., Grotzinger, J. P., Bova, J. A. & Kerschner, W. F. 1986. Models for generation of carbonate cycles. Geology 14, 107–10.2.0.CO;2>CrossRefGoogle Scholar
Schwarzacher, W. & Fischer, A. G. 1982. Limestone-shale bedding and perturbations of the Earth's orbit. In Cyclic and Event Stratification (eds Einsele, G. and Seilacher, A.), pp. 7295. Berlin, Heidelberg, New York: Springer-Verlag.CrossRefGoogle Scholar
Scrutton, C. T. 1978. Periodic growth features in fossil organisms and the length of the day and month. In Tidal Friction and the Earth's Rotation (eds Brosche, P. and Sundemann, J.), pp. 154–96. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Shackleton, N. J. 1987. Oxygen isotopes, ice volume and sea level. Quaternary Science Reviews 6, 183–90.CrossRefGoogle Scholar
Sloss, L. L. 1962. Stratigraphic models in exploration. Journal of Sedimentary Petrology 32, 415–22.Google Scholar
Spencer, R. J. & Demicco, R. V. 1989. Computer modelsof carbonate platform cycles driven by subsidence and eustacy. Geology 17, 165–8.2.3.CO;2>CrossRefGoogle Scholar
Vail, P. R., Mitchum, R. M. Jnr, Todd, R. G., Widmier, J. M., Thompson, S. III, Sangree, J. B., Bubb, J. N. & Hatleilid, W. G. 1977. Seismic stratigraphy and global changes of sea level. In Seismic Stratigraphy – Applications to Hydrocarbon Exploration (ed. Payton, C. E.), pp. 49212. American Association of Petroleum Geologists Memoir no. 26.Google Scholar
Veevers, J. J. & Powell, C. McA. 1987. Late Paleozoicglacial episodes in Gondwanaland reflected in transgressive-regressive depositional sequences in Euramerica. Bulletin of the Geological Society of America 98, 475–87.2.0.CO;2>CrossRefGoogle Scholar
Walkden, G. M. 1987. Sedimentary and diagenetic styles in Late Dinantian Carbonates of Britain. In European Dinantian Environments (eds Miller, J., Adams, A. E. and Wright, V. P.), pp. 131–55. Chichester: John Wiley & Sons.Google Scholar
Walker, J. C. G. & Zahnle, K. J. 1986. Lunar nodal tide and distance to the Moon during the Precambrian. Nature 320, 600–2.CrossRefGoogle Scholar