Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-09T13:50:21.648Z Has data issue: false hasContentIssue false

Upper Wenlock bentonites from Wren's Nest Hill, Dudley: comparisons with prominent bentonites along Wenlock Edge, Shropshire, England

Published online by Cambridge University Press:  19 April 2011

DAVID C. RAY*
Affiliation:
School of Earth & Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth, PO1 3QL, UK Neftex Petroleum Consultants Ltd, Abingdon, OX14 4RY, UK
ADRIAN V. J. COLLINGS
Affiliation:
Arup Geotechnics, The Arup Campus, Blythe Valley Business Park, Solihull, B90 8AE, UK
GRAHAM J. WORTON
Affiliation:
Dudley Museum & Art Gallery, St James Road, Dudley, West Midlands, DY1 1HU, UK
GAVIN JONES
Affiliation:
248 The Broadway, Dudley, West Midlands, DY1 3DN, UK
*
Author for correspondence: daveray01@yahoo.com

Abstract

The upper Wenlock Series (Homerian Stage) of the northern Midland Platform, England, contains numerous volcanic bentonite clay layers. At Wren's Nest Hill, Dudley, 15 bentonites have been investigated and comparisons with the type-Wenlock have been made by means of two key sections along Wenlock Edge, Shropshire. In total 22 bentonites have been investigated and their clay and sand-grade mineralogies determined. Rare earth element (REE) and yttrium concentrations of apatite grains contained within ten of the bentonites have been established allowing geochemical fingerprinting as an indication of provenance of source magmas and identification of geochemical marker beds. Based on the analysis of REE and yttrium concentrations it seems likely that the majority of these bentonites originated from a granodiorite magmatic source. Comparisons with published Llandovery and lower Wenlock age bentonites indicate generally more enrichment in light REEs relative to heavy REEs. In addition, close geochemical similarities between bentonites along Wenlock Edge and at Wren's Nest Hill strongly argue for their presence as precise stratigraphic equivalents within the upper Much Wenlock Limestone Formation. These correlations are further supported by geophysical data from borehole wire-line logs across the West Midlands. Finally, a chemically distinct mid-Homerian episode of volcanism is identified and represents a potentially important marker interval between the study area and other similarly aged bentonites reported from the Island of Gotland, Sweden.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bassett, M. G. 1989. The Wenlock Series in the Wenlock area. In A Global Standard for the Silurian System (eds Holland, C. H. & Bassett, M. G.), pp. 5173. Cardiff: National Museum of Wales, Geological Series no. 9.Google Scholar
Batchelor, R. A. & Clarkson, E. N. K. 1993. Geochemistry of a Silurian metabentonite and associated apatite from the North Esk Inlier, Pentland Hills. Scottish Journal of Geology 29, 123–30.CrossRefGoogle Scholar
Batchelor, R. A. & Jeppsson, L. 1994. Late Llandovery bentonites from Gotland, Sweden, as chemostratigraphic markers. Journal of the Geological Society, London 151, 741–6.CrossRefGoogle Scholar
Batchelor, R. A. & Jeppsson, L. 1999. Wenlock metabentonites from Gotland, Sweden: geochemistry, sources and potential as chemostratigraphic markers. Geological Magazine 136, 661–9.CrossRefGoogle Scholar
Batchelor, R. A., Weir, A. J. & Spjeldnæs, N. 1995. Geochemistry of Telychian metabentonites from Vik, Ringerike District, Oslo Region. Norsk Geologisk Tidsskrift 75, 219–28.Google Scholar
Brett, C. E., Baarli, B. G., Chowns, T., Cotter, E., Driese, S., Goodman, W. & Johnson, M. E. 1998. Early Silurian condensed intervals, ironstones, and sequence stratigraphy in the Appalachian foreland basin. In Silurian Cycles: Linkages of dynamic stratigraphy with atmospheric, oceanic and tectonic changes (ed. Landing, E.), pp. 89143. New York State Museum Bulletin 491.Google Scholar
Butler, A. J. 1937. On Silurian and Cambrian rocks encountered in a deep boring at Walsall, South Staffordshire. Geological Magazine 74, 241–57.CrossRefGoogle Scholar
Cave, R. & Loydell, D. K. 1998. Wenlock volcanism in the Welsh Basin. Geological Journal 33, 107–20.3.0.CO;2-R>CrossRefGoogle Scholar
Cocks, L. R. M. & Torsvik, T. H. 2005. Baltica from the late Precambrian to mid-Palaeozoic times: the gain and loss of a terrane's identity. Earth Science Reviews 72, 3966.CrossRefGoogle Scholar
Collings, A. V. J. 1989. A major regressive event at the top of the Much Wenlock Limestone Formation in the West Midlands. The Murchison Symposium; An International Symposium on the Silurian System. Programme and Abstracts, pp. 40.Google Scholar
Corfield, R. M., Siveter, D. J., Cartlidge, J. E. & McKerrow, W. S. 1992. Carbon isotope excursions near the Wenlock-Ludlow (Silurian) boundary in the Anglo-Welsh area. Geology 20, 371–4.2.3.CO;2>CrossRefGoogle Scholar
Dorning, K. J. 1983. Palynology and stratigraphy of the Much Wenlock Limestone Formation of Dudley, Central England. Mercian Geologist 9, 3140.Google Scholar
Evensen, N. M., Hamilton, P. J. & O'Nions, R. K. 1978. Rare-earth abundances in chondrite meteorites. Geochimica et Cosmochimica Acta 42, 1199–212.CrossRefGoogle Scholar
Fisher, R. V. & Schmincke, H.-U. 1984. Pyroclastic Rocks, pp. 153–56. Springer-Verlag, 472 pp.CrossRefGoogle Scholar
Fleischer, M. & Altschuler, Z. S. 1986. The lantanides and yttrium in minerals of the apatite group: an analysis of the available data. Neues Jahrbuch für Mineralogie, Monatshefte 10, 467–80.Google Scholar
Hiller, S. 1993. Origin, diagenesis and mineralogy of chlorite minerals in the Devonian lacustrine mudrocks, Orcadian Basin, Scotland. Clay and Clay Minerals 41, 240–59.CrossRefGoogle Scholar
Hints, R., Kirsimäe, K., Somelar, P., Kallaste, T. & Kiipli, T. 2006. Chloritization of Late Ordovician K-bentonites from the northern Baltic Palaeobasin – influence from source material or diagenetic environment? Sedimentary Geology 191, 5566.CrossRefGoogle Scholar
Hints, R., Kirsimäe, K., Somelar, P., Kallaste, T. & Kiipli, T. 2008. Multiphase Silurian bentonites in the Baltic Palaeobasin. Sedimentary Geology 209, 6979.CrossRefGoogle Scholar
Huff, W. D., Morgan, D. J. & Rundle, C. C. 1996. Silurian K-bentonites of the Welsh Borderlands: Geochemistry, mineralogy and K-Ar ages of illitization. British Geological Survey Technical Report WG/96/45.Google Scholar
Kallaste, T. & Kiipli, T. 2006. New correlations of Telychian (Silurian) bentonites in Estonia. Proceedings of the Estonian Academy of Sciences, Geology 55, 241–51.CrossRefGoogle Scholar
Kiipli, T., Orlova, K., Kiipli, E. & Kallaste, T. 2008 a. Use of immobile trace elements for the correlation of Telychian bentonites on Saaremaa Island, Estonia, and mapping of volcanic ash clouds. Estonian Journal of Earth Sciences 57, 3952.Google Scholar
Kiipli, T., Radzevičius, S., Kallaste, T., Motuza, V., Jeppsson, L. & Wickström, L. M. 2008 b. Wenlock bentonites in Lithuania and correlation with bentonites from sections in Estonia, Sweden and Norway. GFF 130, 203–10.CrossRefGoogle Scholar
Marshall, C., Thomas, A. T., Boomer, I. & Ray, D. C. 2009. High resolution δ13C stratigraphy of the Homerian (Wenlock) of the English Midlands. In Palaeontological Association, Annual Meeting Abstracts, University of Birmingham, pp. 55–6.Google Scholar
Moore, D. M. & Reynolds, R. C. Jr 1997. X-Ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed. Oxford: Oxford University Press, 378 pp.Google Scholar
Niocaill, C. M. 2000. A new Silurian palaeolatitude for eastern Avalonia and evidence for crustal rotations in the Avalonian margin of southwestern Ireland. Geophysical Journal International 141, 661–71.CrossRefGoogle Scholar
Ogg, J. G., Ogg, G. & Gradstein, F. M. 2008. The Concise Geologic Time Scale. Cambridge: Cambridge University Press, 177 pp.Google Scholar
Pearce, N. J. G, Thorogood, J., Mathews, R. E., Cave, R., Loydell, D. K., Evans, J. A. & Williams, R. A. 2003. Correlating Lower Palaeozoic bentonites using clay and apatite chemistry and isotopic methods: problems at high resolution. In Abstracts of the New Frontiers in the Fourth Dimension: Generation, calibration and application of geological timescales. Geological Association of Canada, Mount Tremblant meeting, Quebec, Canada.Google Scholar
Pharaoh, T. C., Brewer, T. S. & Webb, P. C. 1993. Subduction-related magmatism of late Ordovician age in eastern England. Geological Magazine 130, 647–56.CrossRefGoogle Scholar
Ratcliffe, K. T. & Thomas, A. T. 1999. Carbonate depositional environments in the late Wenlock of England and Wales. Geological Magazine 136, 189204.CrossRefGoogle Scholar
Ray, D. C. 2007. The correlation of Lower Wenlock Series (Silurian) bentonites from the Lower Hill Farm and Eastnor Park boreholes, Midland Platform, England. Proceedings of the Geologists’ Association 118, 175–85.CrossRefGoogle Scholar
Ray, D. C., Brett, C. E., Thomas, A. T. & Collings, A. V. J. 2010. Late Wenlock sequence stratigraphy in central England. Geological Magazine 147, 123–44.CrossRefGoogle Scholar
Ray, D. C. & Butcher, A. 2010. Sequence stratigraphy of the type Wenlock area (Silurian), England. Bollettino della Società Paleontologica Italiana 49, 4754.Google Scholar
Ray, D. C. & Thomas, A. T. 2007. Carbonate depositional environments, sequence stratigraphy and exceptional skeletal preservation in the Much Wenlock Limestone Formation (Silurian) of Dudley, England. Palaeontology 50, 197222.CrossRefGoogle Scholar
Roeder, P. L., MacArthur, D., Ma, X.-P., Palmer, G. R. & Mariano, A. N. 1987. Cathodoluminescence and microprobe study of rare-earth elements in apatite. American Mineralogist 72, 801–11.Google Scholar
Ross, R. J., Naeser, C. W., Izett, G. A., Obradovich, J. D., Bassett, M. G., Hughes, C. P., Cocks, L. R. M., Dean, W. T., Ingham, J. K., Jenkins, C. J., Rickards, R. B., Sheldon, P. R., Toghill, P., Whittington, H. B. & Zalasiewicz, J. 1982. Fission-track dating of British Ordovician and Silurian stratotypes. Geological Magazine 119, 135–53.CrossRefGoogle Scholar
Ross, C. S. & Shannon, E. V. 1926. The minerals of bentonites and related clays and their physical properties. American Ceramics Society Journal 9, 7796.CrossRefGoogle Scholar
Samson, S. D., Kyle, P. R. & Alexander, E. C. Jr. 1988. Correlation of North American Ordovician bentonites by apatite chemistry. Geology 16, 444–7.2.3.CO;2>CrossRefGoogle Scholar
Scoffin, T. P. 1971. The conditions of growth of the Wenlock reefs of Shropshire (England). Sedimentology 17, 173219.CrossRefGoogle Scholar
Shaw, G. H. 2003. Trace element chemistry of individual apatite phenocrysts as a tool for fingerprinting altered volcanic ash beds: assessing interbed and intrabed variation at local and regional scales. Geological Society of America Bulletin 115, 933–42.2.0.CO;2>CrossRefGoogle Scholar
Siveter, D. J. 2000. The Wenlock Series. In British Silurian Stratigraphy (Aldridge, R. J., Siveter, D. J., Siveter, D. J., Lane, P. D., Palmer, D. C. & Woodcock, N. H.), pp. 181324. Peterborough: Geological Conservation Review Series, Joint Nature Conservation Committee.Google Scholar
Teale, T. C. & Spears, A. D. 1986. The mineralogy and origin of some Silurian bentonites, Welsh Borderlands, U. K. Sedimentology 33, 757–65.CrossRefGoogle Scholar
Trench, A. & Torsvik, T. H. 1992. The closure of the Iapetus Ocean and Tornquist Sea: new palaeomagnetic constraints. Journal of the Geological Society, London 149, 867–70.CrossRefGoogle Scholar
Trewin, N. H. 1971. Potassium bentonites in the Wenlock Limestone of Shropshire. The Mercian Geologist 4, 17.Google Scholar
Watkins, N. D., Sparks, R. S. J., Sigurdsson, H., Huang, T. C., Federman, A., Carey, S. & Ninkovich, D. 1978. Volume and extent of the Minoan tephra from Santorini: new evidence from deep-sea sediment cores. Nature 271, 122–27.CrossRefGoogle Scholar
Watson, E. B. & Green, T. H. 1981. Apatite/liquid partition coefficient for the rare earth elements and strontium. Earth & Planetary Science Letters 56, 405–21.CrossRefGoogle Scholar
Weaver, C. E. & Bates, T. F. 1952. Mineralogy and petrography of the Ordovician “meta-bentonites” and related limestones. Clay Minerals Bulletin 1, 258–62.CrossRefGoogle Scholar
Williams, H. & Goles, G. 1968. Volume of the Mazama ash-fall and the origin of Crater Lake Caldera. In Andesite Conference Guidebook (ed. Dole, H. M.), pp. 3741. Oregon State Department of Geology & Mineral Industries Bulletin 62.Google Scholar
Williams, D. M., O'connor, P. D. & Menuge, J. F. 1992. Silurian turbidite provenance and the closure of Iapetus. Journal of the Geological Society, London 149, 349–57.CrossRefGoogle Scholar