Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-09T22:30:17.621Z Has data issue: false hasContentIssue false

On some generalisations of the Riemann-Liouville and Weyl fractional integrals and their applications

Published online by Cambridge University Press:  18 May 2009

J. S. Lowndes
Affiliation:
Department of Mathematics, University of Strathclyde, Glasgow.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. For functions fLLoc[0, ∞) the Riemann-Liouville operator of fractional integration I is defined by

and its adjoint operator, the Weyl operator Kα, is defined by

for functions fLLoc[0, ∞) having a suitable behaviour at infinity.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1981

References

REFERENCES

1.Erdélyi, A., Some applications of fractional integrals, Mathematical Note No. 316, (Boeing Scientific Research Laboratories, 1963).Google Scholar
2.Erdélyi, A., An application of fractional integrals, J. Analyse Math. 14 (1965), 113126.CrossRefGoogle Scholar
3.Erdélyi, A. and McBride, A. C., Fractional integrals of distributions, SIAMJ. Math. Anal. 1 (1970), 547557.CrossRefGoogle Scholar
4.Erdélyi, A., Fractional integrals of generalized functions, in Lecture Notes in Mathematics No. 457 (Springer-Verlag, 1975), 151170.Google Scholar
5.Lowndes, J. S., A generalisation of the Erdélyi-Kober operators, Proc. Edinburgh Math. Soc. 17 (1970), 139148.CrossRefGoogle Scholar
6.Lowndes, J. S., An application of some fractional integrals, Glasgow Math. J. 20 (1979), 3541.CrossRefGoogle Scholar
7.McBride, A. C., A theory of fractional integration for generalised functions, SIAM J. Math. Anal. 6 (1975), 583599.CrossRefGoogle Scholar
8.McBride, A. C., A theory of fractional integration for generalised functions, II, Proc. Roy. Soc. Edinburgh Sect. A 77 (1977), 335349.CrossRefGoogle Scholar
9.Magnus, W., Oberhettinger, F. and Soni, R. P., Formulas and theorems for the special functions of mathematical physics, 3rd ed. (Springer-Verlag, 1966).CrossRefGoogle Scholar
10.Meister, E., Beitrag zur Aerodynamik eines schwingenden, Gitters II (Unterschallstromung), Z. Angew Math. Mech. 42 (1962), 931.CrossRefGoogle Scholar
11.Meister, E., Beitrag zur Aerodynamik eines schwingenden, Gitters III (Unterschallstromung), Z. Angew Math. Mech. 42 (1962), 245254.CrossRefGoogle Scholar
12.Meister, E., Zur Theorie der ebenen instationären Unterschallströmung urn ein schwingendes Profil im Kanal. Z. Angew Math. Phys. 16 (1965), 770780.CrossRefGoogle Scholar
13.Meister, E., Neuere Ergebnisse der mathematischen Theorie instationärer Gitterströmungen, Acta Mech. 3 (1967), 325341.CrossRefGoogle Scholar
14.Sneddon, I. N., Mixed boundary value problems in potential theory (North Holland, 1966).Google Scholar
15.Sneddon, I. N., The use in mathematical physics of Erdélyi-Kober operators and some of their generalizations, in Lecture notes in mathematics No. 457 (Springer-Verlag, 1975), 3779.Google Scholar
16.Vekua, I., New Methods for solving elliptic equations, (North Holland 1967).Google Scholar