Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-23T19:17:41.246Z Has data issue: false hasContentIssue false

Quantum symmetries of Cayley graphs of abelian groups

Published online by Cambridge University Press:  12 October 2023

Daniel Gromada*
Affiliation:
Department of Mathematics, Faculty of Electrical Engineering, Czech Technical University in Prague, Praha, Czechia

Abstract

We study Cayley graphs of abelian groups from the perspective of quantum symmetries. We develop a general strategy for determining the quantum automorphism groups of such graphs. Applying this procedure, we find the quantum symmetries of the halved cube graph, the folded cube graph, and the Hamming graphs.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babai, L., Spectra of Cayley graphs, J. Comb. Theory Ser. B 27(2) (1979), 180189. DOI: 10.1016/0095-8956(79)90079-0.Google Scholar
Banica, T., Théorie des représentations du groupe quantique compact libre $O(n)$ , Comptes rendus de l’Académie des sciences. Série 1, Mathématique 322 (1996), 241244.Google Scholar
Banica, T., Symmetries of a generic coaction, Math. Ann. 314(4) (1999), 763780.Google Scholar
Banica, T., Quantum groups and Fuss–Catalan algebras, Commun. Math. Phys. 226(1) (2002), 221232. DOI: 10.1007/s002200200613.Google Scholar
Banica, T., Quantum automorphism groups of homogeneous graphs, J. Funct. Anal. 224(2) (2005), 243280. DOI: 10.1016/j.jfa.2004.11.002.Google Scholar
Banica, T. and Bichon, J., Quantum automorphism groups of vertex-transitive graphs of order $\le 11$ , J. Algebr. Comb. 26 (2007), 83105.Google Scholar
Banica, T., Bichon, J. and Collins, B., The hyperoctahedral quantum group, J. Ramanujan Math. Soc. 22 (2007), 345384.Google Scholar
Bichon, J., Quantum automorphism groups of finite graphs, Proc. Am. Math. Soc. 131(3) (2003), 665673. DOI: 10.1090/S0002-9939-02-06798-9.Google Scholar
Bichon, J., Free wreath product by the quantum permutation group, Algebras Represent. Theory 7(4) (2004), 343362. DOI: 10.1023/B:ALGE.0000042148.97035.ca.Google Scholar
Banica, T. and McCarthy, J. P., The Frucht property in the quantum group setting, Glasg. Math. J. 64(3) (2021), 603633. DOI: 10.1017/S0017089521000380.Google Scholar
Brauer, R., On algebras which are connected with the semisimple continuous groups, Ann. Math. 38(4) (1937), 857872. DOI: 10.2307/1968843.Google Scholar
Banica, T. and Speicher, R., Liberation of orthogonal Lie groups, Adv. Math. 222(4) (2009), 14611501. DOI: 10.1016/j.aim.2009.06.009.Google Scholar
Chassaniol, A., Study of quantum symmetries for vertex-transitive graphs using intertwiner spaces, arXiv:1904.00455 (2019).Google Scholar
Gromada, D., Compact matrix quantum groups and their representation categories, PhD Thesis (Saarland University, 2020). DOI: 10.22028/D291-32389.Google Scholar
Gromada, D., Free quantum analogue of Coxeter group $D_4$ , J. Algebra 604 (2022), 577613. DOI: 10.1016/j.jalgebra.2022.03.036.Google Scholar
Gromada, D. and Weber, M., Intertwiner spaces of quantum group subrepresentations, Commun. Math. Phys. 376(1) (2020), 81115. DOI: 10.1007/s00220-019-03463-y.Google Scholar
Gromada, D. and Weber, M., Generating linear categories of partitions, Kyoto J. Math. 62(4) (2022), 865909. DOI: 10.1215/21562261-2022-0028.Google Scholar
Jones, V. F. R., The Potts model and the symmetric group, in Subfactors: Proceedings of the Taniguchi Symposium on Operator Algebras (Kyuzeso, 1993) (1994), 259267.Google Scholar
Klimyk, A. and Schmüdgen, K., Quantum groups and their representations (Springer, Berlin, 1997).Google Scholar
Lovász, L., Spectra of graphs with transitive groups, Period. Math. Hung. 6(2) (1975), 191195. DOI: 10.1007/BF02018821.Google Scholar
Liu, X. and Zhou, S., Eigenvalues of Cayley graphs, arXiv:1809.09829 (2019).Google Scholar
Malacarne, S., Woronowicz Tannaka–Krein duality and free orthogonal quantum groups, Math. Scand. 122(1) (2018), 151160. DOI: 10.7146/math.scand.a-97320.Google Scholar
Mirafzal, S. M., Some other algebraic properties of folded hypercubes, Ars Comb. 124 (2016), 154159.Google Scholar
Neshveyev, S. and Tuset, L., Compact quantum groups and their representation categories (Société Mathématique de France, Paris, 2013).Google Scholar
Schmidt, S., On the quantum symmetry of distance-transitive graphs, Adv. Math. 368 (2020), 107150. DOI: 10.1016/j.aim.2020.107150.Google Scholar
Schmidt, S., Quantum automorphism groups of finite graphs, PhD Thesis (Saarland University, 2020). DOI: 10.22028/D291-31806.Google Scholar
Schmidt, S., Quantum automorphisms of folded cube graphs, Annales de l’Institut Fourier 70(3) (2020), 949970. DOI: 10.5802/aif.3328.Google Scholar
Timmermann, T., An invitation to quantum groups and duality (European Mathematical Society, Zürich, 2008).Google Scholar
Wang, S., Free products of compact quantum groups, Commun. Math. Phys. 167(3) (1995), 671692. DOI: 10.1007/BF02101540.Google Scholar
Wang, S., Quantum symmetry groups of finite spaces, Commun. Math. Phys. 195(1) (1998), 195211. DOI: 10.1007/s002200050385.Google Scholar
Weber, M., Introduction to compact (matrix) quantum groups and Banica–Speicher (easy) quantum groups, Proc. Math. Sci. 127(5) (2017), 881933. DOI: 10.1007/s12044-017-0362-3.Google Scholar
Woronowicz, S. L., Compact matrix pseudogroups, Commun. Math. Phys. 111(4) (1987), 613665. DOI: 10.1007/BF01219077.Google Scholar
Woronowicz, S. L., Tannaka–Krein duality for compact matrix pseudogroups. Twisted $SU(N)$ groups, Invent. Math. 93(1) (1988), 3576. DOI: 10.1007/BF01393687.Google Scholar