Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-08-01T03:59:41.662Z Has data issue: false hasContentIssue false

C. auris and neighborhood socioeconomic vulnerability in the state of Maryland from 2019 to 2022

Published online by Cambridge University Press:  30 July 2024

L. Leigh Smith*
Affiliation:
Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
Jason Falvey
Affiliation:
Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, USA
Brittany Grace
Affiliation:
Maryland Department of Health; Baltimore, MD, USA
Elisabeth Vaeth
Affiliation:
Maryland Department of Health; Baltimore, MD, USA
Jamie Rubin
Affiliation:
Maryland Department of Health; Baltimore, MD, USA
Rebecca Perlmutter
Affiliation:
Maryland Department of Health; Baltimore, MD, USA
David Blythe
Affiliation:
Maryland Department of Health; Baltimore, MD, USA
Daryl Hawkins
Affiliation:
Maryland Department of Health; Baltimore, MD, USA
Martha Mbuthia
Affiliation:
Maryland Department of Health; Baltimore, MD, USA
Mary-Claire Roghmann
Affiliation:
Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
Clare Rock
Affiliation:
Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine; Baltimore, MD, USA
Surbhi Leekha
Affiliation:
Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
*
Corresponding author: L. Leigh Smith; Email: llsmith@som.umaryland.edu

Abstract

Background:

Candida auris is an emerging fungal pathogen increasingly recognized as a cause of healthcare-associated infections including outbreaks.

Methods:

We performed a mixed-methods study to characterize the emergence of C. auris in the state of Maryland from 2019 to 2022, with a focus on socioeconomic vulnerability and infection prevention opportunities. We describe all case-patients of C. auris among Maryland residents from June 2019 to December 2021 detected by Maryland Department of Health. We compared neighborhood socioeconomic characteristics of skilled nursing facilities (SNFs) with and without C. auris transmission outbreaks using both the social vulnerability index (SVI) and the area deprivation index (ADI). The SVI and the ADI were obtained at the state level, with an SVI ≥ 75th percentile or an ADI ≥ 80th percentile considered severely disadvantaged. We summarized infection control assessments at SNFs with outbreaks using a qualitative analysis.

Results:

A total of 140 individuals tested positive for C. auris in the study period in Maryland; 46 (33%) had a positive clinical culture. Sixty (43%) were associated with a SNF, 37 (26%) were ventilated, and 87 (62%) had a documented wound. Separate facility-level neighborhood analysis showed SNFs with likely C. auris transmission were disproportionately located in neighborhoods in the top quartile of deprivation by the SVI, characterized by low socioeconomic status and high proportion of racial/ethnic minorities. Multiple infection control deficiencies were noted at these SNFs.

Conclusion:

Neighborhood socioeconomic vulnerability may contribute to the emergence and transmission of C. auris in a community.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Society for Healthcare Epidemiology of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Vallabhaneni, S, Kallen, A, Tsay, S, et al. Investigation of the first seven reported cases of Candida auris, a globally emerging invasive, multidrug-resistant fungus - United States, May 2013-August 2016. MMWR Morb Mortal Wkly Rep 2016;65:12341237.CrossRefGoogle ScholarPubMed
Rossow, J, Ostrowsky, B, Adams, E, et al. Factors associated with Candida auris colonization and transmission in skilled nursing facilities with ventilator units, New York, 2016–2018. Clin Infect Dis 2021;72:e753e760.CrossRefGoogle ScholarPubMed
Biswal, M, Rudramurthy, SM, Jain, N, et al. Controlling a possible outbreak of Candida auris infection: lessons learnt from multiple interventions. J Hosp Infect 2017;97:363370.CrossRefGoogle ScholarPubMed
Eyre, DW, Sheppard, AE, Madder, H, et al. A Candida auris outbreak and its control in an intensive care setting. N Engl J Med 2018;379:13221331.CrossRefGoogle Scholar
Karmarkar, EN, O’Donnell, K, Prestel, C, et al. Rapid assessment and containment of Candida auris transmission in postacute care settings-orange county, California, 2019. Ann Intern Med 2021;174:15541562.CrossRefGoogle ScholarPubMed
Philpott, D, Hughes, CM, Alroy, KA, et al. Epidemiologic and clinical characteristics of monkeypox cases - United States, May 17-July 22, 2022. MMWR Morb Mortal Wkly Rep 2022;71:10181022.CrossRefGoogle Scholar
Tipirneni, R, Schmidt, H, Lantz, PM, Karmakar, M, et al. Associations of 4 geographic social vulnerability indices with US COVID-19 incidence and mortality. Am J Public Health 2022;112:15841588.CrossRefGoogle ScholarPubMed
Falvey, JR, Hade, EM, Friedman, S, et al. Severe neighborhood deprivation and nursing home staffing in the United States. J Am Geriatr Soc 2023;71:711719.CrossRefGoogle ScholarPubMed
Jeleff, M, Lehner, L, Giles-Vernick, T, et al. Vulnerability and one health assessment approaches for infectious threats from a social science perspective: a systematic scoping review. Lancet Planet Health 2022;6:e682e693.CrossRefGoogle ScholarPubMed
Centers for Disease Control and Prevention. Infection Control Assessment and Response (ICAR) Tool for General Infection Prevention and Control (IPC) Across Settings. Atlanta, Georgia: Centers for Disease Control and Prevention; 2022.Google Scholar
Kind, AJH, Buckingham, WR. Making neighborhood-disadvantage metrics accessible - the neighborhood Atlas. N Engl J Med 2018;378:24562458.CrossRefGoogle ScholarPubMed
Neighborhood Atlas. Area Deprivation Index. Madison: University of Wisconsin School of Medicine and Public Health; 2020.Google Scholar
Flanagan, BE, Hallisey, EJ, Adams, E, Lavery, A. Measuring community vulnerability to natural and anthropogenic hazards: the centers for disease control and prevention’s social vulnerability index. J Environ Health 2018;80:3436.Google ScholarPubMed
Centers for Disease Control and Prevention. CDC/ATSDR Social Vulnerability Index. Atlanta, Georgia: Centers for Disease Control and Prevention; 2020.Google Scholar
See, I, Wesson, P, Gualandi, N, et al. Socioeconomic factors explain racial disparities in invasive community-associated methicillin-resistant staphylococcus aureus disease rates. Clin Infect Dis 2017;64:597604.CrossRefGoogle ScholarPubMed
Kind, AJ, Jencks, S, Brock, J, et al. Neighborhood socioeconomic disadvantage and 30-day rehospitalization: a retrospective cohort study. Ann Intern Med 2014;161:765774.CrossRefGoogle ScholarPubMed
Abrams, HR, Loomer, L, Gandhi, A, Grabowski, DC. Characteristics of U.S. nursing homes with COVID-19 cases. J Am Geriatr Soc 2020;68:16531656.CrossRefGoogle ScholarPubMed
Yuan, Y, Louis, C, Cabral, H, Schneider, JC, Ryan, CM, Kazis, LE. Socioeconomic and geographic disparities in accessing nursing homes with high star ratings. J Am Med Dir Assoc 2018;19:852859 e2.CrossRefGoogle ScholarPubMed
Park, YJ, Martin, Martin EG., Geographic disparities in access to nursing home services: assessing fiscal stress and quality of care. Health Serv Res 2018;53:29322951.CrossRefGoogle ScholarPubMed
Adams, E, Quinn, M, Tsay, S, et al. Candida auris in Healthcare Facilities, New York, USA, 2013–2017. Emerg Infect Dis 2018;24:18161824.CrossRefGoogle ScholarPubMed
Caceres, DH, Rivera, SM, Armstrong, PA, et al. Case-case comparison of Candida auris versus other Candida species bloodstream infections: results of an outbreak investigation in Colombia. Mycopathologia 2020;185:917923.CrossRefGoogle ScholarPubMed
Pacilli, M, Kerins, JL, Clegg, WJ, et al. Regional emergence of Candida auris in Chicago and lessons learned from intensive follow-up at 1 ventilator-capable skilled nursing facility. Clin Infect Dis 2020;71:e718e725.CrossRefGoogle ScholarPubMed
Aldejohann, AM, Wiese-Posselt, M, Gastmeier, P, Kurzai, O. Expert recommendations for prevention and management of Candida auris transmission. Mycoses 2022;65:590598.CrossRefGoogle ScholarPubMed
Caceres, DH, Forsberg, K, Welsh, RM, et al. Candida auris: a review of recommendations for detection and control in healthcare settings. J Fungi (Basel) 2019;5:111.CrossRefGoogle ScholarPubMed
van Buul, LW, van der Steen, JT, Veenhuizen, RB, et al. Antibiotic use and resistance in long term care facilities. J Am Med Dir Assoc 2012;13:568 e113.CrossRefGoogle ScholarPubMed
McKinnell, JA, Miller, LG, Eells, SJ, Cui, E, Huang, SS. A systematic literature review and meta-analysis of factors associated with methicillin-resistant Staphylococcus aureus colonization at time of hospital or intensive care unit admission. Infect Control Hosp Epidemiol 2013;34:10771086.CrossRefGoogle ScholarPubMed