Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-09-11T07:01:07.743Z Has data issue: false hasContentIssue false

How to Limit the Spread of Creutzfeldt-Jakob Disease

Published online by Cambridge University Press:  02 January 2015

Dominique Dormont*
Affiliation:
Service de Neurovirologie, CEA/CRSSA/DSV/DRM, Cedex, France
*
Service de Neurovirologie, CEA/CRSSA/DSV/DRM, B.P. 6, 92265 Fontenay aux Roses Cedex, France

Abstract

Transmissible spongiform encephalopathies are rare lethal diseases induced in humans and animals by unconventional agents called transmissible spongiform encephalopathy agents (TSEAs), virions, or prions. Several cases of iatrogenic Creutzfeldt-Jakob disease (CJD) have been reported in the literature after neuro-surgery, treatment with pituitary-derived hormones, corneal grafting, and use of dura mater lyophilisates. In a given infected individual, TSEA-associated infectiousness depends on the nature of the organ: the central nervous system has the highest infectiousness, spleen and lymph nodes a medium infectiousness, and organs such as bone, skin, or skeletal muscles do not harbor any detectable infectiousness in experimental models. Transmissible spongiform encephalopathy/prions have unconventional properties; in particular, they resist almost all the chemical and physical processes that inactivate conventional viruses. Therefore, prevention of CJD agent transmission must be taken into account in daily hospital practice. Efficient sterilization procedures should be determined. In tissue and blood donation, donors with a neurologic history must be excluded, and patients treated with pituitary-derived hormones should be considered potentially infected with TSEA and excluded.

Type
From the Fourth International Conference on the Prevention of Infection
Copyright
Copyright © The Society for Healthcare Epidemiology of America 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Creutzfeldt, HG. Uber eine eigenartige herdformige Erkrankung des Zentralnervensystems. Z Neurol U Psychiatr 1920;57:118.Google Scholar
2. Jakob, A. Uber eine eigenartige Erkrankung des Zentral-nervensystems mit bemerkenswertem anatomischem Befunde (spastische pseudosklerotische Encephalomyelopathie mit disseminierten Degenerationsherden). Dtsch Z Nervenheilk 1921;70:132146.Google Scholar
3. Gerstmann, J, Straüssler, E, Scheinker, I. Über eine eigenartige hereditär-familiäre Erkrankung des Zentralnervensystems. Z Neurol 1936;154:736762.Google Scholar
4. Gajdusek, DC, Zigas, V. Degenerative disease of the central nervous system in New Guinea: the endemic occurrence of ‘kuru’ in the native population. N Engl J Med 1957;257:974978.CrossRefGoogle ScholarPubMed
5. Medori, R, Tritschler, HJ, Leblanc, A, et al. Fatal familial insomnia, a prion disease with a mutation at codon-178 of the prion protein gene. N Engl J Med 1992;326:444449.Google Scholar
6. Cuillé, J, Chelle, PL. La maladie dite tremblante du mouton estelle inoculable? Comptes Rendus de l'Académie des Sciences de Paris 1936;203:15521554.Google Scholar
7. Burger, D, Hartsough, GR. Encephalopathy of mink, II: experimental and natural transmission. J Infect Dis 1965;115:393399.Google Scholar
8. Wells, GAH, Scott, AC, Johnson, CT, et al. A novel progressive spongiform encephalopathy in cattle. Vet Rec 1987;121:419420.Google Scholar
9. Beck, E, Bak, IJ, Christ, JF, Gajdusek, DC, Gibbs, CJ, Hassler, R. Experimental kuru in the spider monkey: histopathological and ultrastructural studies of the brain during early stages. Brain 1975;98:585612.Google Scholar
10. Beck, E, Daniel, PM, Alpers, M, Gajdusek, DC, Gibbs, CJ. Experimental ‘kuru’ in chimpanzees: a pathological report. Lancet 1966;ii:10561059.Google Scholar
11. Beck, E, Daniel, PM, Gajdusek, DC, Gibbs, CJ. Experimental kuru in the chimpanzee: an neuropathological study. Brain 1973;96:441442.Google Scholar
12. Chandler, RL. Encephalopathy in mice produced by inoculation with scrapie brain material. Lancet 1961:13781379.Google Scholar
13. Cuillé, J, Chelle, PL. La tremblante du mouton est bien inoculable. Comptes Rendus de l'Académmie des Sciences de Paris 1938;206:7879.Google Scholar
14. Prusiner, SB. Novel proteinaceous infectious particles cause scrapie. Science 1982;216:136144.Google Scholar
15. Gibbs, CJ, Joy, A, Heffner, R, et al. Clinical and pathological features and laboratory confirmation of Creutzfeldt-Jakob disease in a recipient of pituitary-derived human growth hormone. N Engl J Med 1985;313:734738.CrossRefGoogle Scholar
16. Gibbs, CJ, Asher, DM, Brown, PW, Fradkin, JE, Gajdusek, DC. Creutzfeldt-Jakob disease infectivity of growth hormone derived from human pituitary glands. N Engl J Med 1993;328:358359.Google Scholar
17. Billette de Villemeur, T, Beauvais, P, Gourmelon, M, Richardet, JM. Creutzfeldt-Jakob disease in children treated with growth hormone. Lancet 1991;337:864865.Google Scholar
18. Hsiao, KK, Baker, HF, Crow, TJ, et al. Linkage of a prion protein missense variant to Gerstmann-Straüssler syndrome. Nature 1989;338:342345.CrossRefGoogle ScholarPubMed
19. Doh Ura, K, Tateishi, J, Sasaki, H, Kitamoto, T, Sakaki, Y. Proleu change at position 102 of prion protein is the most common but not the sole mutation related to Gerstmann-Straüssler syndrome. Biochem Biophys Res Commun 1989;2:974979.Google Scholar
20. Hsiao, KK, Dlouhy, SR, Farlow, MR, et al. Mutant prion proteins in Gerstmann-Straüssler-Scheinker disease with neurofibrillary tangles. Nat Genet 1992;1:6871.CrossRefGoogle ScholarPubMed
21. Goldgaber, D, Goldfarb, LG, Brown, P, et al. Mutation in familial Creutzfeldt-Jakob disease and Gerstmann-Straüssler-Scheinker syndrome. Exp Neurol 1989;106:204206.Google Scholar
22. Goldfarb, LG, Brown, P, Mccombie, WR, et al. Transmissible familial Creutzfeldt-Jakob disease associated with five, seven, and eight extra octapeptide coding repeats in the PRNP gene. Proc Natl Acad Sci U S A 1991;88:1092610930.Google Scholar
23. Palmer, MS, Dryden, A, Hughes, J, Collinge, J. Homozygous prion protein genotype predisposes to sporadic CreutzfeldtJakob disease. Nature 1991;352:340342.CrossRefGoogle ScholarPubMed
24. Collinge, J, Palmer, MS, Dryden, AJ. Genetic predisposition to iatrogenic Creutzfeldt-Jakob disease. Lancet 1991:14411442.Google Scholar
25. Deslys, JP, Marcé, D, Dormont, D. Similar genetic susceptibility in iatrogenic and sporadic Creutzfeldt-Jakob disease. J Gen Virol 1994;75:2327.Google Scholar
26. Kimberlin, RH, Walker, CA. Suppression of scrapie infection in mice by heteropolyanion 23, dextran sulfate, and some other polyanions. Antimicrob Agents Chemother 1986;30:409413.Google Scholar
27. Demaimay, R, Adjou, KT, Lasmézas, CI., et al. Pharmacological studies of a new derivative of amphotericin-B, MS-8209, in mouse and hamster scrapie. J Gen Virol 1994;75:24992503.Google Scholar
28. Merz, PA, Somerville, RA, Wisniewski, HM, Iqbal, K. Abnormal fibrils from scrapie infected brain. Acta Neuropathol (Berl) 1981;54:6374.Google Scholar
29. Lampert, PW, Gajdusek, DC, Gibbs, CJ. Subacute spongiform virus encephalopathies: scrapie, kuru and Creutzfeldt-Jakob disease. Am J Pathol 1972;68:626646.Google ScholarPubMed
30. Dickinson, AG, Bruce, ME, Outram, GW, Kimberlin, RH. Scrapie strain differences: the implications of stability and mutation. Proceedings of workshop on slow transmissible diseases (Japanese). Tokyo, Japan. 1984;105118.Google Scholar
31. Kimberlin, RH, Walker, CA. Pathogenesis of mouse scrapie: effect of route of inoculation on infectiousness titers and dose-response curves. J Comp Pathol 1978;88:3947.Google Scholar
32. Prusiner, SB, Hadlow, WJ, Eklund, CM, Race, RE, Cochran, SP. Sedimentation characteristics of the scrapie agent from murine spleen and brain. Biochemistry 1978;17:49874992.CrossRefGoogle ScholarPubMed
33. Prusiner, SB, McKinley, MP, Groth, DF, et al. Scrapie agent contains a hydrophobic protein. Proc Natl Acad Sci U S A 1981;78:66756679.Google Scholar
34. Prusiner, SB, McKinley, MP, Bowman, KA, et al. Scrapie prions aggregate to form amyloid-like birefringent rods. Cell 1983;35:349358.Google Scholar
35. Dickinson, AG, Taylor, DM. Resistance of scrapie to decontamination. N Engl J Med 1978;299:14131414.Google Scholar
36. Brown, P, Wolff, A., Liberski, PP, Gajdusek, DC. Resistance of scrapie infectivity to steam autoclaving after formaldehyde fixation, and limited survival after washing at 360°C: practical and theoretical implications. J Infect Dis 1990;161:467472.Google Scholar
37. Latarget, R, Muel, B, Haig, DA, Clarke, MC, Alper, T. Inactivation of the scrapie agent by near monochromatic ultraviolet light. Nature 1970;227:13411343.CrossRefGoogle Scholar
38. Latarjet, R. Inactivation of the agents of scrapie, Creutzfeldt Jakob disease, and kuru by radiations. In: Prusiner, SB, Hadlow, WJ, eds. Slow Transmissible Diseases of the Nervous System. New York, NY: Academic Press 1979:387408.Google Scholar
39. Taylor, DM, McConnell, I. Autoclaving does not decontaminate formol-fixed scrapie tissues. Lancet 1988;1:14631464.Google Scholar
40. Haig, DA, Clark, MC. The effect of ? propiolactone on the scrapie agent. J Gen Virol 1968;3:281283.Google Scholar
41. Brown, P, Rohwer, RG, Green, EM, Gajdusek, DC. The effect of chemicals, heat, and histopathologic processing on high infectivity hamster-adapted scrapie virus. In: Court, L, ed. Virus Non Conventionnels et Affections du Système Nerveux Central. Paris, France: Masson; 1983:156163.Google Scholar
42. Taylor, DM. Creutzfeldt-Jakob disease. Lancet 1996;347:1333.Google Scholar
43. Ernst, DR, Race, RE. Comparative analysis of scrapie agent inactivation methods. J Virol Methods 1993;41:193201.Google Scholar
44. Prusiner, SB, Groth, DF, Cochran, SP, Masiarz, FR, McKinley, MP, Martinez, HM. Molecular properties, partial purifications, and assay by incubation period measurements of the hamster scrapie agent. Biochemistry 1980;19:48834891.CrossRefGoogle ScholarPubMed
45. Brown, P, Rohwer, RG, Gajdusek, DC. Newer data on the inactivation of scrapie virus or Creutzfeldt-Jakob disease virus in brain tissue. J Infect Dis 1986;153:11451148.Google Scholar
46. Millson, GC, Hunter, GD, Kimberlin, RH. The physico-chemical nature of the scrapie agent. In: Kimberlin, RH, ed. Slow Virus Diseases of Animals and Man. New York, NY: American Elsevier; 1976:43266.Google Scholar
47. McKinley, MP, Masiarz, FR, Isaacs, ST, Hearst, JE, Prusiner, SB. Resistance of the scrapie agent to inactivation by psoralens. Photochem Photobiol 1983;37:539545.Google Scholar
48. Oesch, B, Westaway, D, Walchli, M, et al. A cellular gene encodes scrapie PrP 27-30 protein. Cell 1985;40:735746.Google Scholar
49. Prusiner, SB, Hadlow, WJ, Eklund, CM, Race, RE. Sedimentation properties of the scrapie agent. Proc Natl Acad Sci U S A 1977;74:46564660.Google Scholar
50. Prusiner, SB. Chemistry and biology of prions. Biochemistry 1992;31:1227712288.CrossRefGoogle ScholarPubMed
51. Hope, J, Baybutt, H. The key role of the nerve membrane protein PrP in scrapie-like diseases. Seminars in the Neurosciences 1991;3:165171.CrossRefGoogle Scholar
52. Oesch, B, Westaway, D, Prusiner, SB. Prion protein genes: evolutionary and functional aspects. In: Chesebro, BW, ed. Current Topics in Microbiology and Immunology. Transmissible Spongiform Encephalopathies: Scrapie, BSE and Related Disorders. Berlin, Germany: Springer-Verlag; 1991:109124.Google Scholar
53. Prusiner, SB, Fuzi, M, Scott, M, et al. Immunologic and molecular biologic studies of prion proteins in bovine spongiform encephalopathy. J Infect Dis 1993;167:602613.CrossRefGoogle ScholarPubMed
54. Kimberlin, RH, Walker, CA. Pathogenesis of mouse scrapie: dynamics of agent replication in spleen, spinal cord and brain after infection by different routes. J Comp Pathol 1979;89:551562.Google Scholar
55. Prusiner, SB. Transgenetic investigations of prion diseases of humans and animals. Philos Trans R Soc Lond Biol 1993;339:239254.Google Scholar
56. Prusiner, SB, Scott, M, Foster, D, et al. Transgenetic studies implicate interactions between homologous PrP isoforms in scrapie prion replication. Cell 1990;63:673686.Google Scholar
57. Forloni, G, Angeretti, N, Chiesa, R, et al. Nature 1993;362:543546.CrossRefGoogle Scholar
58. Büeler, H, Fischer, M, Lang, Y, et al. Normal development and behaviour of mice lacking the neuronal cell surface PrP protein. Nature 1992;356:577582.CrossRefGoogle ScholarPubMed
59. Dickinson, AG, Outram, GW. Genetic aspects of unconventional virus infections: the basis of the virion hypothesis. In: Ciba Foundation Symposium. Novel Infectious Agents and the Central Nervous System. Chichester, UK: John Wiley & Sons;1988;135:6383.Google Scholar
60. Rohwer, RG. Virus-like sensitivity of the scrapie agent to heat inactivation. Science 1984;223:600602.Google Scholar
61. Bolton, DC, Bendheim, PE. A modified host protein model of scrapie. In: Ciba Foundation Symposium. Novel Infectious Agents and the Central Nervous System. Chichester, UK: John Wiley & Sons; 1988;135:164177.Google Scholar
62. Hurst, LD, Haig, DH. Prion infection. Nature 1991;351:21.CrossRefGoogle ScholarPubMed
63. Liautard, JP. Les prions sontils des molécules chaperonnes mal repliées? Médecine Sciences 1992;8:5557.CrossRefGoogle Scholar
64. Moser, M, Oesch, B, Bueler, H. An anti-prion protein. Nature 1993;362:213214.Google Scholar
65. Gajdusek, DC. Transmissible and non-transmissible amyloidos-es: autocatalytic posttranslational conversion of host precursor proteins to ?-pleated configurations. J Neuroimmunol 1988;20:95110.Google Scholar
66. Aranda-Anzaldo, A. Possible cell-free prion replication. Med Hypotheses 1992;38:249251.Google Scholar
67. Pablos-Mendez, A., Netto, EM, Defendini, R. Infectious prions or cytotoxic metabolites. Lancet 1993;341:159161.Google Scholar
68. Note for guidance. Guidelines for Minimizing the Risk of Transmitting Agents Causing Spongiform Encephalopathy via Medicinal Products. Ad Hoc Working Party on Biotechnology/Pharmacy and Working Party on Safety Measures 01/05/1992, 111/3298/91-EN.Google Scholar
69. Report of a WHO consultation on public health issues related to animal and human spongiform encephalopathies. November 12-14, 1991; WHO/CDS/VHP/92.104.Google Scholar
70. Will, RG, Ironside, JW, Zeidler, M, et al. A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 1996;347:921925.Google Scholar
71. Brown, P, Preece, MA, Will, RG. Friendly fire in medicine-hormones, gomografts, and Creutzfeldt-Jakob disease. Lancet 1992;340:2427.Google Scholar