Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-11T09:41:48.286Z Has data issue: false hasContentIssue false

Registration of Disinfectants Based on Relative Microbicidal Activity

Published online by Cambridge University Press:  02 January 2015

William A. Rutala*
Affiliation:
Division of Infectious Disease, University of North Carolina(UNC School of Medicine, and the Department of Hospital Epidemiology, UNC Health Care System, Chapel Hill, North Carolina
David J. Weber
Affiliation:
Division of Infectious Disease, University of North Carolina(UNC School of Medicine, and the Department of Hospital Epidemiology, UNC Health Care System, Chapel Hill, North Carolina
*
CB #7030 Bioinformatics Building, 130 Mason Farm Road, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7030

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Readers' Forum
Copyright
Copyright © The Society for Healthcare Epidemiology of America 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Rutala, WA, Weber, DJ, Healthcare Infection Control Practices Advisory Committee. CDC guideline for disinfection and sterilization in healthcare facilities. Federal Register 2003. In press.Google Scholar
2.Rutala, WA. APIC guidelines for infection control practice. Am J Infect Control 1996;24:313342.Google Scholar
3.Rutala, WA, Weber, DJ. Surface disinfection: should we do it? J Hosp Infect 2001;48:S64S68.Google Scholar
4.Rutala, WA, Cole, EC. Ineffectiveness of hospital disinfectants against bacteria: a collaborative study. Infect Control 1987;8:501506.Google Scholar
5.Rutala, WA, Weber, DJ. FDA labeling requirements for disinfection of endoscopes: a counterpoint. Infect Control Hosp Epidemiol 1995;16:231235.Google Scholar
6.Sanders, FT. Environmental Protection Agency's role in the regulation of antimicrobial pesticides in the United States. In: Rutala, WA, ed. Disinfection, Sterilization, and Antisepsis in Health Care: Principles and Practices in Healthcare. Washington, DC: Association for Professionals in Infection Control and Epidemiology; 1998:2840.Google Scholar
7.Maillard, J-Y. Bacterial target sites for biocide action. J Appl Microbiol 2002;92(suppl):S16S27.Google Scholar
8.Russell, AD. Principles of antimicrobial activity and resistance. In: Block, S, ed. Disinfection, Sterilization, and Preservation, ed. 5. Philadelphia: Lippincott Williams & Wilkins; 2001.Google Scholar
9.Hawkey, PM. Mechanisms of resistance of antibiotics. Intensive Care Med 2000;26(suppl):S9S13.Google Scholar
10.Hogan, D, Kolter, R. Why are bacteria refractory to antimicrobials? Curr Opin Microbiol 2002;5:472477.Google Scholar
11.Normark, BH, Normark, S. Evolution and spread of antibiotic resistance. J Intern Med 2002;252:91106.CrossRefGoogle ScholarPubMed
12.Jacoby, GA. Extended-spectrum β-lactamases and other enzymes providing resistance to oxymino-β-lactams. Infect Dis Clin North Am 1997;11:875887.Google Scholar
13.Azucena, E, Mobashery, S. Aminoglycoside-modifying enzymes: mechanisms of catalytic processes and inhibition. Drug Resist Updat 2001;4:106117.Google Scholar
14.Philippon, A, Arlet, G, Jacoby, GA. Plasmid-determined ampC-type β-lactamases. Antimicrob Agents Chemother 2002;46:111.Google Scholar
15.Chambers, HF.Penicillin-binding protein-mediated resistance in pneu-mococci and staphylococci. J Infect Dis 1999;179(suppl 2):S353S359.Google Scholar
16.Chambers, HF. Methicillin-resistance in staphylococci: molecular and biochemical basis and clinical implications. Clin Microbiol Rev 1997;10:781791.Google Scholar
17.Shortridge, VD, Flamm, RK, Ramer, N, Beyer, J, Tanaka, SK. Novel mechanism of macrolide resistance in Streptococcus pneumoniae. Diagn Microbiol Infect Dis 1996;26:7378.Google Scholar
18.Shortridge, VD, Doern, GV, Brueggemann, AB, Beyer, JM, Flamm, RK. Prevalence of macrolide resistance mechanisms in isolates from a mul-ticenter antibiotic resistance prevalence study conducted in the United States in 1994-1995. Clin Infect Dis 1999;29:11861188.Google Scholar
19.Berger-Bachi, B. Genetic basis of methicillin resistance in Staphylococcus aureus. Cell Mol Life Sci 1999;56:764770.Google Scholar
20.Huovinen, P. Increases in rates of resistance to trimethoprim. Clin Infect Dis 1997;24(suppl 1):S63S66.Google Scholar
21.Sutcliffe, J, Tait-Kamradt, A, Wondrack, L. Streptococcus pneumoniae and Streptococcus pyogenes resistant to macrolides but sensitive to clindamycin: a common resistance pattern mediated by an efflux system. Antimicrob Agents Chemother 1996;40:18171824.Google Scholar
22.Nikaido, H. Preventing drug access to targets: cell surface permeability barriers and active efflux in bacteria. Semin Cell Dev Biol 2001;12:215223.Google Scholar
23.Levy, SB. Active efflux, a common mechanism for biocide and antibiotic resistance. J Appl Microbiol 2002;92(suppl):S65S71.Google Scholar
24.Huovinen, P. Resistance to trimethoprim-sulfamethoxazole. Clin Infect Dis 2001;32:16081614.Google Scholar
25.Acar, JF, Goldstein, FW. Trends in bacterial resistance to fluoroquinolones. Clin Infect Dis 1997;24(suppl 1):S67S73.Google Scholar
26.Russell, AD. Bacterial resistance to disinfectants: present knowledge and future problems. J Hosp Infect 1999;43(suppl):S57S68.Google Scholar
27.Gerba, CP, Rusin, P. Relationship between the use of antiseptics and disinfectants and the development of antimicrobial resistance. In: Rutala, WA, ed. Proceedings of the Conference on Disinfection, Antisepsis and Sterilization: Practices and Challenges for the New Millennium. Washington, DC: Association for Professionals in Infection Control and Epidemiology; 2001.Google Scholar
28.Russell, AD. Mechanisms of bacterial resistance to biocides. International Biodeterioration & Biodegradation 1995;36:247265.Google Scholar
29.Russell, AD. Mechanisms of bacterial resistance to antibiotics and biocides. Prog Med Chem 1998;35:133197.Google Scholar
30.Jones, RD. Bacterial resistance and topical antimicrobial wash products. Am J Infect Control 1999;27:351363.Google Scholar
31.McDonnell, G, Russell, AD. Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 1999;12:147179.Google Scholar
32.Russell, AD. Mechanisms of bacterial insusceptibility to biocides. Am J Infect Control 2001;29:259261.CrossRefGoogle ScholarPubMed
33.Poole, K. Mechanisms of bacterial biocide and antibiotic resistance. J Appl Microbiol 2002;92(suppl):S55S64.Google Scholar
34.Bloomfield, SF. Significance of biocide usage and antimicrobial resistance in domiciliary environments. J Appl Microbiol 2002;92(suppl):S144S157.Google Scholar
35.Russell, AD. Do biocides select for antibiotic resistance? J Pharm Pharmacol 2000;52:227233.Google Scholar
36.Russell, AD. Introduction of biocides into clinical practice and the impact on antibiotic-resistant bacteria. J Appl Microbiol 2002;92(suppl):S121S135.Google Scholar
37.Weber, DJ, Rutala, WA. Use of germicides in the home and healthcare setting: is there a relationship between germicide use and antimicrobial resistance? Infect Control Hosp Epidemiol. In press.Google Scholar
38.Russell, AD. The role of plasmids in bacterial resistance to antiseptics, disinfectants and preservatives. J Hosp Infect 1985;6:919.Google Scholar
39.Russell, AD. Plasmids and bacterial resistance to biocides. J Appl Microbiol 1997;82:155165.Google Scholar
40.Heinzel, M. Phenomena of biocide resistance in microorganisms. International Biodeterioration & Biodegradation 1998;41:225234.Google Scholar
41.Rutala, WA, Weber, DJ. Creutzfeldt-Jakob disease: recommendations for disinfection and sterilization. Clin Infect Dis 2001;32:13481356.Google Scholar
42.Barbee, SL, Weber, DJ, Sobsey, MD, Rutala, WA. Inactivation of Cryptosporidium parvum oocyst infectivity by disinfection and sterilization. Gastrointest Endosc 1999;49:605611.Google Scholar
43.Klein, M, DeForest, A. The inactivation of viruses by germicides. Chemical Specialists Manufacturers Association Proceedings 1963;49:116118.Google Scholar
44.Carmeli, Y, Troillet, N, Eliopoulos, GM, Samore, MH. Emergence of antibiotic-resistant Pseudomonas aeruginosa: comparison of risks associated with different antipseudomonal agents. Antimicrob Agents Chemother 1999;43:13791382.Google Scholar
45.Gold, HS, Moellering, RC. Drug therapy: antimicrobial-drug resistance. N Engl J Med 1996;335:14451453.Google Scholar
46.Cohen, FL, Tartasky, D. Microbial resistance to drug therapy: a review. Am J Infect Control 1997;25:5164.Google Scholar
47.Castiglia, M, Smego, RA. The global problem of antimicrobial resistance. J Am Pharm Assoc (Wash) 1997;NS37:383387.Google Scholar
48.Levy, SB. The challenge of antibiotic resistance. Sci Am 1998;278:4653.Google Scholar
49.Levy, SB. The future of antibiotics: facing antibiotic resistance. Clin Microbiol Infect 2000;6(suppl 3):101106.Google Scholar
50.Tenover, FC. Development and spread of bacterial resistance to antimicrobial agents: an overview. Clin Infect Dis 2001;33(suppl 3):S108S115.Google Scholar
51.Levy, SB. Antibiotic resistance: consequences of inaction. Clin Infect Dis 2001;33(suppl 3):S124S129.Google Scholar
52.Sefton, AM. Mechanisms of antimicrobial resistance: their clinical relevance in the new millennium. Drugs 2002;62:557566.Google Scholar
53.Collignon, PJ. Antibiotic resistance. MJA 2002;177:325329.Google Scholar
54.Leggiadro, RJ. The clinical impact of resistance in the management of pneumococcal disease. Infect Dis Clin North Am 1997;11:867874.Google Scholar
55.Harwell, JI, Brown, RB. The drug-resistant Pneumococcus: clinical relevance, therapy, and prevention. Chest 2000;117:530541.Google Scholar
56.Leggiadro, RJ. Penicillin-nonsusceptible Pneumococcus. Int J Antimicrob Agents 2000;14:123127.Google Scholar
57.File, TM. Appropriate use of antimicrobial for drug-resistant pneumonia: focus on the significance of β-lactam-resistant Streptococcus pneumoniae. Clin Infect Dis 2002;34(suppl 1):S17S26.Google Scholar
58.Appelbaum, PC. Resistance among Streptococcus pneumoniae: implications for drug selection. Clin Infect Dis 2002;24:16131620.Google Scholar
59.Parsons, LM, Driscoll, JR, Taber, HW, Salfinger, M. Drug resistance in tuberculosis. Infect Dis Clin North Am 1997;11:905927.Google Scholar
60.Pablos-Mendez, A, Raviglione, MC, Laszlo, A, et al.Global surveillance for antituberculosis-drug resistance, 1994-1997. N Engl J Med 1998;338:16411649.Google Scholar
61.Espinal, MA, Laszlo, A, Simonsen, L, et al.Global trends to antituberculous drugs. N Engl J Med 2001;344:12941303.Google Scholar
62.Loddenkemper, R, Sagebiel, D, Brendel, A. Strategies against multidrug-resistant tuberculosis. Eur Respir J Suppl 2002;36:S66S77.Google Scholar
63.Dye, C, Williams, BG, Espinal, MA, Raviglione, MC. Erasing the world's slow strain: strategies to beat multidrug-resistant tuberculosis. Science 2002;295:20422046.Google Scholar
64.Lind, I. Antimicrobial resistance in Neisseria gonorrhoeae. Clin Infect Dis 1997;24(suppl 1):S93S97.Google Scholar
65.Ison, CA, Dillon, J-A, Tapsall, JW. The epidemiology of global resistance among Neisseria gonorrhoeae and Haemophilus ducreyi. Lancet 1998;351(suppl 3):811.Google Scholar
66.Centers for Disease Control and Prevention. Sexually Transmitted Disease Surveillance 2002 Supplement: Gonococcal Isolate Surveillance Project (GISP) Annual Report, 2001. Atlanta, GA: U.S. Department of Health and Human Services; 2002.Google Scholar
67.Rowe, B, Ward, LR, Threlfall, EJ. Multidrug resistant Salmonella typhi: a worldwide epidemic. Clin Infect Dis 1997;24(suppl 1):S106S109.Google Scholar
68.Threlfall, EJ, Ward, LR, Frost, JA, Willshaw, GA. The emergence and spread of resistance in food-borne bacteria. Int J Food Microbiol 2000;62:15.Google Scholar
69.Hohmann, EL. Nontyphoidal salmonellosis. Clin Infect Dis 2001;32:263269.Google Scholar
70.Threllfall, EJ. Antimicrobial drug resistance in Salmonella: problems and perspectives in food- and water-borne infections. FEMS Microbiol Rev 2002;26:141148.Google Scholar
71.Nuwaha, F. The challenge of chloroquine-resistant malaria in sub-Saharan Africa. Health Policy and Planning 2001;16:112.CrossRefGoogle ScholarPubMed
72.Phillips, RS. Current status of malaria and potential for control. Clin Microbiol Rev 2001;14:208226.Google Scholar
73.Wellems, TE, Plowe, CV. Chloroquine-resistant malaria. J Infect Dis 2001;184:770776.Google Scholar
74.Trape, JF. The public health impact of chloroquine resistance in Africa. Am J Trop Med Hyg 2001;64(suppl1-2):1217.Google Scholar
75.Nosten, F, Brasseur, P. Combination therapy for malaria: the way forward? Drugs 2002;62:13151329.Google Scholar
76.Maranan, MC, Moreira, B, Boyle-Vavra, S, Daum, RS. Antimicrobial resistance in staphylococci. Infect Dis Clin North Am 1997;11:813849.Google Scholar
77.Kelley, M, Weber, DJ, Dooley, KE, Rutala, WA. Healthcare-associated methicillin-resistant Staphylococcus aureus. Seminars in Infection Control 2001;1:157171.Google Scholar
78.Eliopoulos, GM. Vancomycin-resistant enterococci. Infect Dis Clin North Am 1997;11:851865.Google Scholar
79.Murray, BE. Drug therapy: vancomycin-resistant enterococcal infections. N Engl J Med 2000;342:710721.Google Scholar
80.Farr, BM. Vancomycin-resistant enterococcal infections: epidemiology and control. Seminars in Infection Control 2001;1:148156.Google Scholar
81.Pootoolal, J, Neu, J, Wright, GD. Glycopeptide antibiotic resistance. Ann Rev Pharmacol Toxicol 2002;42:381408.Google Scholar
82.Patterson, JE. Extended-spectrum beta-lactamase-producing gram-negative bacilli. Seminars in Infection Control 2001;1:184190.Google Scholar
83.Larson, LL, Ramphal, R. Extended-spectrum beta-lactamases. Semin Respir Infect 2002;17:189194.Google Scholar
84.Anderson, RL, Carr, JH, Bond, WW, Favero, MS. Susceptibility of vancomycin-resistant enterococci to environmental disinfectants. Infect Control Hosp Epidemiol 1997;18:195199.CrossRefGoogle ScholarPubMed
85.Dychdala, GR. Chlorine and chlorine compounds. In: Block, SS, ed. Disinfection, Sterilization, and Preservation. Philadelphia: Lippincott, Williams & Wilkins; 2001:135157.Google Scholar
86.Stickler, DJ. Susceptibility of antibiotic-resistant Gram-negative bacteria to biocides: a perspective from the study of catheter biofilms. J Appl Microbiol 2002;92(suppl):S163S170.Google Scholar
87.Gupta, A, Matsui, K, Lo, J-F, Silver, S. Molecular basis for resistance to silver cations in Salmonella. Nat Med 1999;5:183188.Google Scholar
88.Cooksey, DA. Characterization of a copper resistance plasmid conserved in copper-resistant strains of Pseudomonas syringae pv. tomato. Appl Environ Microbiol 1987;53:454456.Google Scholar
89.Tennent, JM, Lyon, BR, Midgley, M, et al.Physical and biochemical characterization of the qach gene encoding antiseptic and disinfectant resistance in Staphylococcus aureus. Journal of General Microbiology 1989;135:110.Google Scholar
90.Littlejohn, TG, DiBerardino, D, Messerotti, LJ, Spiers, SJ, Skurray, RA. Structure and evolution of a family of genes encoding antiseptic and disinfectant resistance in Staphylococcus aureus. Gene 1990;101:5966.Google Scholar
91.Littlejohn, TG, Paulsen, LT, Gillespie, MT, et al.Substrate specificity and energetics of antiseptic and disinfectant resistance in Staphylococcus aureus. FEMS Microbiol Lett 1992;95:259266.Google Scholar
92.Leelaporn, A, Paulsen, IT, Tennent, JM, Littlejohn, TG, Skurray, RA. Multidrug resistance to antiseptics and disinfectants in coagulase-negative staphylococci. J Med Microbiol 1994;40:214222.Google Scholar
93.Sattar, SA. New methods for efficacy testing of disinfectants and antiseptics. In: Rutala, WA, ed. Disinfection, Sterilization, and Antisepsis in Health Care: Principles and Practices in Healthcare. Washington, DC: Association for Professionals in Infection Control and Epidemiology; 2001:173186.Google Scholar
94.Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International, Association of Official Analytical Chemists, ed. 17. Arlington, VA: Association of Official Analytical Chemists; 2002.Google Scholar
95.Mulberry, GK. Current methods of testing disinfectants. In: Rutala, WA. Chemical Germicides in Health Care. Morin Heights, Quebec, Canada: Polyscience Publications; 1995:225236.Google Scholar
96.Sattar, SA. Microbicidal testing of germicides: an update. In: Rutala, WA, ed. Sterilization, Disinfection and Antisepsis in Health Care. Champlain, NY: Polyscience Publications; 1998:227240.Google Scholar
97.Cole, EC, Rutala, WA, Samsa, GP. Standardization of bacterial numbers on penicylinders used in disinfectant testing: interlaboratory study. Journal of the Association of Official Analytical Chemists 1987;70:635637.Google Scholar
98.Cole, EC, Rutala, WA, Carson, JL. Evaluation of penicylinders used in disinfectant testing: bacterial attachment and surface texture. Journal of the Association of Official Analytical Chemists 1987;70:903906.Google Scholar
99.Cole, EC, Rutala, WA. Bacterial numbers on penicylinders used in disinfectant testing: use of twenty-four hour adjusted broth cultures. Journal of the Association of Official Analytical Chemists 1988;71:911.Google Scholar
100.Cole, EC, Rutala, WA, Alfano, EM. Comparison of stainless steel penicylinders used in disinfectant testing. Journal of the Association of Official Analytical Chemists 1988;71:288289.Google Scholar
101.Alfano, EM, Cole, EC, Rutala, WA. Quantitative evaluation of bacteria washed from stainless steel penicylinders during the AOAC use-dilution method. Journal of the Association of Official Analytical Chemists 1988;71:868871.Google Scholar
102.Cole, EC, Rutala, WA, Samsa, GP. Disinfectant testing using a modified use-dilution method: collaborative study. Journal of the Association of Official Analytical Chemists 1988;71:11871194.Google Scholar
103.Cole, EC, Rutala, WA, Carson, JL, Alfano, EM. Pseudomonas pellicle in disinfectant testing: electron microscopy, pellicle removal and effect on test results. Appl Environ Microbiol 1989;55:511513.Google Scholar