Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-19T05:50:21.009Z Has data issue: false hasContentIssue false

5. Chondrules as Condensation Products

Published online by Cambridge University Press:  12 April 2016

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The formation of meteoritic chondrules via condensation from the primordial solar nebula is discussed. Chondrule formation in regions where the gas/dust ratio was enhanced, and where transient high energy events heated the gas and temporarily vaporized the dust, is advocated. The observed diversity of chondrule types can be understood as resulting from local variations in the initial gas/dust proportions and other parameters.

Type
Part VI. Primitive Meteorites
Copyright
Copyright © A.H. Delsemme 1977

References

Blander, M., and Katz, J. L. 1967, Geochim. Cosmochim. Acta, 31, 1025.CrossRefGoogle Scholar
Cameron, A.G.W. 1973, Icarus, 18, 407.CrossRefGoogle Scholar
Cameron, A.G.W. 1970, Space Sci. Rev., 15, 121.Google Scholar
Cameron, A.G.W. 1966, Earth Planet. Sci. Letters, 1, 93.CrossRefGoogle Scholar
Dodd, R. T. 1971, Contrib. Mineral. Petrol. 31, 201.CrossRefGoogle Scholar
Fredriksson, K., Noonan, A., and Nelen, J. 1973. The Moon, 7, 475.CrossRefGoogle Scholar
Herndon, J. M., and Suess, H. E. 1976, Can the Ordinary Chondrites have Condensed from a Gas Phase? (Preprint).CrossRefGoogle Scholar
Kieffer, S. W. 1975, Science, 189, 333.CrossRefGoogle Scholar
King, E. A., Carman, M. F., and Butler, J. C. 1972, Science, 175, 59.CrossRefGoogle Scholar
Kurat, G. 1967, Geochim. Cosmochim. Acta, 31, 491.CrossRefGoogle Scholar
Lange, D. E., and Larimer, J. W. 1975, Science, 182, 290.Google Scholar
Podolak, M., and Cameron, A.G.W. 1974, Icarus, 23, 326.CrossRefGoogle Scholar
Reid, A. M., Williams, R. J., Gibson, E. K., and Fredriksson, K. 1974, Meteoritics, 9, 35.CrossRefGoogle Scholar
Strom, S. E., Grasdalen, G. L., and Strom, K. M. 1974, Astrophys. J., 191, 111.CrossRefGoogle Scholar
Suess, H. E. 1963, in Jastrow, R. and Cameron, A.G.W. (eds.), Origin of the Solar System, Academic Press, New fork, p. 143.CrossRefGoogle Scholar
Suess, H. E. 1949 Z. Elektrochem. 53, 237.Google Scholar
Urey, H. C. 1967, Icarus, 7, 350.CrossRefGoogle Scholar
Walter, L. S., and Dodd, R. T. 1972, Meteoritics, 7, 341.CrossRefGoogle Scholar
Wasson, J. T. 1972, Rev. Geophys. Space Phys. 10, 711.CrossRefGoogle Scholar
Whipple, F. L. 1972, in Elvius, A. (ed.), Nobel Symposium No. 21: from Plasma to Planet, Almqvist and Wiksell, Stockholm, p. 211.Google Scholar
Whipple, F. L. 1966, Science, 153, 54.CrossRefGoogle Scholar
Wiik, H. B. 1963, Space Sci. Rev. 1, 621.Google Scholar
Wlotzka, G. 1969, in Millman, P. (ed.), Meteorite Research, D. Reidel, Dordrecht, p. 174.CrossRefGoogle Scholar
Wood, J. A. 1967, Geochim. Cosmochim. Acta, 31, 2095.CrossRefGoogle Scholar
Wood, J. A. 1963, Icarus, 2, 152.CrossRefGoogle Scholar
Wood, J. A. 1962, Geochim. Cosmochim. Acta, 26, 739.CrossRefGoogle Scholar