Hostname: page-component-788cddb947-tr9hg Total loading time: 0 Render date: 2024-10-19T14:08:38.042Z Has data issue: false hasContentIssue false

The Blazar Paradigm: Synchro-Compton Emission from Relativistic Jets

Published online by Cambridge University Press:  12 April 2016

Alan P. Marscher*
Affiliation:
Department of Astronomy, Boston University, Boston, MA 02215, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I review the current paradigm for nonthermal emission from jets in blazars. The evidence for relativistically flowing jets seems to be more compelling than the case for incoherent synchrotron and self-Compton emission in these objects. I discuss some of the important aspects of current observations of rapid variability at radio frequencies, and stress that one must be careful when calculating the Doppler factor that saves us from the inverse Compton “catastrophe.” I discuss the possibilities for the nature of the VLBI components and present evidence that, at high frequencies, the core is a standing shock wave (Mach disk), while the superluminal components are propagating shocks. I expect that high-frequency and space VLBI will resolve many of the major outstanding issues.

Type
Research Article
Copyright
Copyright © Astronomical Society of the Pacific 1998

References

Alberdi, A., et al. 1993. ApJ, 402, 160172.CrossRefGoogle Scholar
Blandford, R.D., & Königl, A. 1979. ApJ, 232, 3448.CrossRefGoogle Scholar
Conway, J.E., & Murphy, D.W. 1993. ApJ, 411, 89102.Google Scholar
Daly, R.A., & Marscher, A.P. 1988. ApJ, 334, 539551.Google Scholar
Dermer, C.D., & Schlickeiser, R. 1993. ApJ, 416, 458484.Google Scholar
Gómez, J.L., et al. 1997. ApJ, 482, L3336.Google Scholar
Heeschen, D.S. 1984. AJ, 89, 11111123.Google Scholar
Hjellming, R.M., & Johnston, K.J. 1981. ApJ, 246, L141145.Google Scholar
Hughes, P.A., Aller, H.D., & Aller, M.F. 1985. ApJ, 298, 301315.Google Scholar
Kawai, N., et al. 1991. ApJ, 382, 508514.Google Scholar
Kemball, A.J., Diamond, P.J., & Pauliny-Toth, I.I.K. 1996. ApJ, 464, L5558.Google Scholar
Landau, R., et al. 1986. ApJ, 308, 7892.Google Scholar
Linfield, R.P., et al. 1990. ApJ, 358, 350358.Google Scholar
Lister, M.L., & Marscher, A.P. 1997. ApJ, 476, 572588.Google Scholar
Lobanov, A.P., & Zensus, J.A. 1998. ApJ, submitted.Google Scholar
Makino, F., et al. 1989. ApJ, 347, L912.Google Scholar
Maraschi, L., Ghisellini, G., & Celotti, A. 1992. ApJ, 397, L59.Google Scholar
Marcaide, J.M., & Shapiro, I.I. 1984. ApJ, 276, 5659.Google Scholar
Marscher, A.P. 1992. In Physics of Active Galactic Nuclei, eds. Duschl, W.J. & Wagner, S.J. (Heidelberg: Springer-Verlag), 510524.Google Scholar
Marscher, A.P. 1995. Proc. Natl. Acad. Sci. USA, 92, 1143911441.Google Scholar
Marscher, A.P. 1996. In Energy Transport in Radio Galaxies and Quasars, eds. Hardee, P.E., Bridle, A.H., &: Zensus, J.A. (San Francisco: Astron. Soc. of the Pacific), 4554.Google Scholar
Marscher, A.P., & Gear, W.K. 1985. ApJ, 298, 114127.Google Scholar
Marscher, A.P., et al. 1997. BAAS, 29, 847.Google Scholar
Mattox, J.R., et al. 1993. ApJ, 410, 609614.CrossRefGoogle Scholar
Readhead, A.C.S. 1994. ApJ, 426, 5159.CrossRefGoogle Scholar
Rickett, B.J., Coles, W.A., & Bourgois, G. 1984. A&A, 134, 390395.Google Scholar
Shapirovskaya, N.Ya. 1978. Soviet Ast., 22, 544547.Google Scholar
Sikora, M., Begelman, M.C., & Rees, M.J. 1994. ApJ, 421, 153162.Google Scholar
Vermeulen, R.C., & Cohen, M.H. 1994. ApJ, 430, 467494.Google Scholar
Wagner, S.J., & Witzel, A. 1995. ARA&A, 33, 163197.Google Scholar
Weatherall, J.C., & Benford, G. 1991. ApJ, 378, 543549.Google Scholar
Worrall, D.M., et al. 1987. ApJ, 313, 596606.Google Scholar