Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-11T12:14:11.488Z Has data issue: false hasContentIssue false

Dust Driven Winds in Late Supergiants

Published online by Cambridge University Press:  12 April 2016

Erwin Sedlmayr
Affiliation:
Institut für Astronomie und Astrophysik Technische Universität Berlin Hardenbergstraβe 36, D-1000 Berlin 12
Carsten Dominik
Affiliation:
Institut für Astronomie und Astrophysik Technische Universität Berlin Hardenbergstraβe 36, D-1000 Berlin 12
Hans-Peter Gail
Affiliation:
Institut für Theoretische Astrophysik Universität Heidelberg Im Neuenheimer Feld 561, 6900 Heidelberg 1

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The oool extended shells of giants and supergiants are well known to be places of copious dust formation as indicated by the occurrence of pronounced extinction, reddening, and polarization of the continuous star light and by the appearance of particular absorption features, both manifesting the interaction of photons with particles considerably larger than atoms or molecules.

The accepted explanation of these phenomena is the formation of circumstellar dust, i.e. small solid particles with a typical size of the order of 0.1 micron. However, the analysis of these effects yields only information on the interaction of photons with certain functional groups within the clusters - e.g. Si-O, C-H, C-C bending and Si-O, C-C,... stretching vibrations - and thus allows no definite determination of the “real” physical structure and chemical composition of the grain particles. Therefore, observational conclusions concerning the properties of circumstellar dust can provide only some “mean” information which allows no definitive conclusions regarding the true nature of the observed grains (geometrical shape, crystalline structure,...?).

Type
Part II. Mass-Losing Stars in Different Stages of Evolution
Copyright
Copyright © Springer-Verlag 1988

References

Deguchi, S.: 1980, Astrophys. J. 236, 567 CrossRefGoogle Scholar
Gail, H.-P., Keller, R., Sedlmayr, E.: 1984, Astron. Astrophys. 133, 320 Google Scholar
Gail, H.-P., Sedlmayr, E.: 1987a, Astron. Astrophys. 171, 197 Google Scholar
Gail, H.-P., Sedlmayr, E.: 1987b, Astron. Astrophys. 177, 186 Google Scholar
Gail, H.-P., Sedlmayr, E.: 1987o, in preparationGoogle Scholar
Gail, H.-P., Sedlmayr, E.: 1987d, in “Physical Processes in Interstellar Clouds”, eds. Morfii, G.E., Scholer, M., NATO ASI SeriesGoogle Scholar
Jura, M.t 1983, Astrophys. J. 267, 647 Google Scholar
Knapp, G.R., Phillips, T.G., Leighton, R.B., Lo, K.Y., Wannier, P.G.: 1982, Astrophys. J. 252, 616 Google Scholar
Knapp, G.R., Morris, M.: 1985a, Astrophys. J. 54, 229 Google Scholar
Knapp, G.R.: 1985b, Astrophys. J. 293, 273 CrossRefGoogle Scholar
Knapp, G.R.: 1986, Astrophys. J. 311, 731 CrossRefGoogle Scholar
Kozasa, T., Hasegawa, H., Seki, J.: 1984, Astrophys. Space Sci. 98, 61 Google Scholar
Kwok, S.: 1975, Astrophys. J. 198, 583 CrossRefGoogle Scholar
Lucy, L.B.: 1976, Astrophys. J. 198, 583 Google Scholar
Rowan-Robinson, M., Harris, S.: 1983, Mon. Not. R. astron. Soc. 202, 797 CrossRefGoogle Scholar
Salpeter, E.E.: 1974a, Astrophys. J. 193, 579 Google Scholar
Scholz, M., Tsuji, T.: 1984, Astron. Astrophys. 130, 11.Google Scholar
Wickramasinghe, N.C.: 1972, in “Interstellar Matter”, eds. Wickramasinghe, N-C., Kahn, F.D., Mezger, P.G., Geneva Observ., SauvernyGoogle Scholar