Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-27T17:20:49.010Z Has data issue: false hasContentIssue false

Emission Lines and the Spectral Energy Distributions of Quasars

Published online by Cambridge University Press:  12 April 2016

B.J. Wilkes
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA
P.J. Green
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA
S. Mathur
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA
J.C. McDowell
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Many years of study have failed to establish conclusively relationships between a quasar’s spectral energy distribution (SED) and the emission lines it is thought to produce. This is at least partially due to the lack of well-observed SEDs. We present initial results from a line–SED study for a sample of 43 quasars and active galaxies for which we have optical and ultraviolet spectra and far-infrared–X-ray SEDs. We present the results of tests for correlations between line equivalent widths and SED luminosity and slope parameters and compare these results to those from earlier studies. We find that the Baldwin effect is weaker when the luminosity is defined close to the ionizing continuum of that line and conclude that the detailed SED is likely to be important in making further progress.

Type
II. Broad Emission Lines
Copyright
Copyright © Astronomical Society of the Pacific 1997

References

Baldwin, J.A. 1977, ApJ, 214, 679.CrossRefGoogle Scholar
Bergeron, J., & Kunth, D. 1984, MNRAS, 207, 873.CrossRefGoogle Scholar
Boiler, T., Brandt, W.N., & Fink, H. 1996, A&A, 305, 53.Google Scholar
Boroson, T.A. 1989, ApJ, 343, L9.Google Scholar
Boroson, T.A., & Green, R.F. 1992, ApJS, 80, 109.Google Scholar
Corbin, M.R., & Boroson, T.A. 1996, ApJS, in press.Google Scholar
Elvis, M., Wilkes, B.J., McDowell, J.C., Green, R.F., Bechtold, J., Willner, S.P., Cutri, R., Oey, M.S., & Polomski, E. 1994, ApJS, 95, 1.Google Scholar
Green, P.J. 1996, ApJ, 468, in press.Google Scholar
Krolik, J.H., & Kallman, T.R. 1988, ApJ, 324, 714.Google Scholar
Kuhn, O. 1996, Ph.D. Thesis, Harvard University.Google Scholar
Lanzetta, K.M., Turnshek, D.A. & Sandoval, J. 1993, ApJS, 84, 109.Google Scholar
Laor, A., Fiore, F., Elvis, M.S., Wilkes, B.J., & McDowell, J.C. 1994, ApJ, 435, 611.Google Scholar
Laor, A., Fiore, F., Elvis, M.S., Wilkes, B.J., & McDowell, J.C. 1996, ApJ, submitted.Google Scholar
LaValley, M., Isobe, T., & Feigelson, E.D. 1992, in Astronomical Data Analysis Software and Systems, ed. Worrall, D. et al. (San Francisco: ASP), 245.Google Scholar
Lawrence, A., Elvis, M.S., Wilkes, B.J., McHardy, I., & Brandt, N. 1996, MNRAS, (submitted).Google Scholar
Mushotzky, R., & Ferland, G.J. 1984, ApJ, 278, 558.Google Scholar
Netzer, H. 1987, MNRAS, 225, 55.Google Scholar
Netzer, H. 1990, in Active Galactic Nuclei, ed. Courvoisier, T.J-L. & Mayor, M. (Springer: Berlin), p. 57.Google Scholar
Wilkes, B.J., & Elvis, M. 1987, ApJ, 323, 243.Google Scholar
Wilkes, B.J., Elvis, M., & McHardy, I. 1987, ApJL, 321, L23.Google Scholar
Wilkes, B.J., Tananbaum, H., Worrall, D.M., Avni, Y., Oey, M.S., & Flanagan, J. 1994, ApJS, 92, 53.CrossRefGoogle Scholar
Zheng, W., & O’Brien, P. 1990, ApJ, 353, 433.CrossRefGoogle Scholar
Zheng, W., Kriss, G.A., & Davidsen, A.F. 1995, ApJ, 440, 606.CrossRefGoogle Scholar