Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-18T03:26:18.996Z Has data issue: false hasContentIssue false

The Equation of State of Fluid Hydrogen at High Density

Published online by Cambridge University Press:  12 April 2016

G. Chabrier*
Affiliation:
Laboratoire de Physique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex07, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a free energy model for fluid hydrogen at high-density and high-temperature. This model aims at describing pressure dissociation and ionization, which occur in partially ionized plasmas encountered in the interiors of giant planets and low-mass stars. The model describes an interacting mixture of H2, H, H+ and e in chemical equilibrium. The concentrations of H2+ and H ions are found to be negligible for equation of state purposes. Our model relies on the so-called chemical picture approach, based on the factorization of the partition function into translational, internal and configurational degrees of freedom. The present model is found to be unstable in the pressure-ionization regime and predicts the existence of a first-order plasma phase transition (PPT) which ends up at a critical point given by Tc = 15300 K, Pc = 0.614 Mbar, and ρc = 0.35 gem−3. The transition occurs between a weakly ionized phase and a partially ionized (~ 50%) phase.

Type
Reviews
Copyright
Copyright © Cambridge University Press 1994

References

Aparicio, J.M. and Chabrier, G., to appear in Phys. Rev. E; see also these proceedings.Google Scholar
Ashcroft, N.W. and Stroud, D., Solid State Phys., 33, Academic, New-York (1978)Google Scholar
Chabrier, G., J. de Physique France 51, 1607, (1990)CrossRefGoogle Scholar
Chabrier, G., Saumon, D., Hubbard, W.B., and Lunine, L.I., Ap. J. 391, 817, (1992)CrossRefGoogle Scholar
Däppen, W., Anderson, L. and Mihalas, D., Ap. J., 319, 195, (1987)CrossRefGoogle Scholar
DeWitt, H.E., J. Math. Phys. 3, 1216, (1962)CrossRefGoogle Scholar
Ebeling, W. and Richert, W., Phys. Lett. A, 108, 80, (1985a)CrossRefGoogle Scholar
Ebeling, W. and Richert, W., Phys. Status Solidi, 128, 467, (1985b)CrossRefGoogle Scholar
Friedli, C. and Ashcroft, N.W., Phys. Rev. A, 16, 662, (1977)Google Scholar
Goldstein, R.E. and Ashcroft, N.W., Phys. Rev. Lett., 55, 2164, (1985)CrossRefGoogle Scholar
Grabowski, B, Madej, J. and Halenka, J, Ap. J., 313, 750, (1987)CrossRefGoogle Scholar
Gründke, E.W. and Henderson, D., Mol. Phys. 24 (2), 269, (1972)CrossRefGoogle Scholar
Hashimoto, S. and Yamaguchi, N., Phys. Lett. A, 95, 299, (1983)CrossRefGoogle Scholar
Huber, K.P. and Herzberg, G., Molecular Spectra and Molecular Structures, (Van Nostrana, Princeton), (1979)CrossRefGoogle Scholar
Hemley, R.J. and Mao, H.K., Phys. Rev. Lett, 61, 857, (1988)CrossRefGoogle Scholar
Hemley, R.J., Mao, H.K. and Shu, J.F., Phys. Rev. Lett, 65, 2670, (1990)CrossRefGoogle Scholar
Hemley, R.J., Mao, H.K., Finger, L.W., Jephcoat, A.P., Hazen, R.M. and Zha, C.S., Phys. Rev. B, 42, 6458, (1990)CrossRefGoogle Scholar
Hümmer, D.G. and Mihalas, D., Ap. J. 331, 794, (1988)CrossRefGoogle Scholar
Ichimaru, S., Iyetomi, H. and Tanaka, S., Phys. Rep., 149, (1987)CrossRefGoogle Scholar
Kang, H.S, Lee, C.S., Ree, T. and Ree, F. J. Chetn. Phys. 82 (1), 414, (1985)CrossRefGoogle Scholar
Kollos, W. and Wolniewicz, , J. Chem. Phys., 43, 2429, (1965)CrossRefGoogle Scholar
Kraeft, W.D., Kremp, D., Ebelimg, W. and Röpke, G., Quantum Statistics of Charged Particle Systems, Plenum (1986)CrossRefGoogle Scholar
Mansoori, G.A., Carnahan, N.F., Starling, K.E. and Leland, T.W. J. Chem. Phys. 54 (4), 1523,(1971)CrossRefGoogle Scholar
Marley, M.S. and Hubbard, W.B., Icarus, 73, 53, (1988)CrossRefGoogle Scholar
Nellis, W.J., Holmes, N.C., Mitchell, A.C., Trainor, R.J., Governo, G.K., Ross, M. and Young, D.A., Phys. Rev. Letters 53 (13), 1248, (1984)CrossRefGoogle Scholar
Porter, R.N. and Karplus, M., J. Chem. Phys., 40, 1105, (1964)CrossRefGoogle Scholar
Redmer, R., Röpke, G and Zimmermann, R., J. Phys. B, 20, 4069, (1987)CrossRefGoogle Scholar
Ross, M, Ree, F.H. and Young, D.A., J. Chem. Phys., 79, 1487, (1983)CrossRefGoogle Scholar
Saumon, D. and Chabrier, G., Phys. Rev. A 44, 5122, (1991)CrossRefGoogle Scholar
Saumon, D. and Chabrier, G., Phys. Rev. A 46, 2084, (1992)CrossRefGoogle Scholar
Saumon, D., Chabrier, G. and Weis, J.J., J. Chem. Phys., 90, 7395, (1989)CrossRefGoogle Scholar
Saumon, D., Hubbard, W.B., Chabrier, G. and Van Horn, H.M., Ap. J. 391, 827, (1992)CrossRefGoogle Scholar
Stevenson, D.J. and Salpeter, E.E., Ap. J. Suppl., bf 35, 221, (1977)CrossRefGoogle Scholar
Utsumi, K. and Ichimaru, S., Phys. Rev. A, 26, 603, (1982)CrossRefGoogle Scholar
Weeks, J.D., Chandler, D. and Andersen, H.C., J. Chem. Phys. 54, 5237, (1971)CrossRefGoogle Scholar
Weise, W.L., Kelleher, D.E. and Paquette, D.R., Phys. Rev. A, 6, 1132, (1972)CrossRefGoogle Scholar
Wigner, E. and Huntington, H.B., J. Chem. Phys., 3, 764, (1935)CrossRefGoogle Scholar