Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-21T18:21:28.628Z Has data issue: false hasContentIssue false

Neutron Star Mergers, Disks Around Black Holes, and Gamma-Ray Bursts

Published online by Cambridge University Press:  12 April 2016

H.-Th. Janka
Affiliation:
Max-Planck-Institut für Astrophysik, D-85740 Garching, Germany
M. Ruffert
Affiliation:
Max-Planck-Institut für Astrophysik, D-85740 Garching, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have performed three-dimensional hydrodynamical simulations of the coalescence of binary neutron stars taking into account the emission and backreaction of gravitational waves in the Newtonian code based on the “Piecewise Parabolic Method”. The use of the physical equation of state (EOS) of Lattimer & Swesty (1991) allowed us to calculate the production of neutrinos. We evaluated our models for the efficiency of v⊽ annihilation in the surroundings of the coalescing neutron stars. The corresponding energy deposition prior to and during merging turned out to be 2–3 orders of magnitude too small to power a typical γ-ray burst (GRB) with an energy output of ~ (1051/4π) erg/sterad at cosmological distances. Analytical estimates of the subsequent evolution of the disk which possibly surrounds the central black hole showed that even under the most favorable conditions the energy provided by v⊽ee+γγ falls short by at least an order of magnitude. We discuss the implications of our results and speculate about possibilities how v⊽ annihilation might still be a viable energy source for GRBs.

Type
Part 8. X-Ray Binaries, Transients and Super-Soft Sources
Copyright
Copyright © Astronomical Society of the Pacific 1997

References

Colella, P., Woodward, P.R., 1984, JCP 54, 174 Google Scholar
Duncan, R.C., Shapiro, S.L., Wasserman, I., 1986, ApJ 309, 141 Google Scholar
Eichler, D., Livio, M., Piran, T., Schramm, D.N., 1989, Nat 340, 126 CrossRefGoogle Scholar
Goodman, J., 1986, ApJ 308, L47 Google Scholar
Goodman, J., Dar, A., Nussinov, S., 1987, ApJ 314, L7 Google Scholar
Janka, H.-Th., Ruffert, M., A&A 307, L33 Google Scholar
Jaroszyński, M., 1993, Acta Astron. 43, 183 Google Scholar
Jaroszyński, M., 1996, A&A 305, 839 Google Scholar
Lattimer, J.M., Swesty, F.D., 1991, Nucl. Phys. A535, 331 Google Scholar
Meegan, C.A., et al., 1995, ApJS, in pressGoogle Scholar
Mészáros, P., Rees, M.J., 1992, MNRAS 257, 29PGoogle Scholar
Mochkovitch, R., Hernanz, M., Isern, J., Martin, X., 1993, Nat 361, 236 Google Scholar
Mochkovitch, R., Hernanz, M., Isern, J., Loiseau, S., 1995, A&A 293, 803 Google Scholar
Narayan, R., Piran, T., Shemi, A., 1991, ApJ 379, L17 Google Scholar
Paczyński, B., 1986, ApJ 308, L43 Google Scholar
Paczyński, B., 1990, ApJ 318, 363 Google Scholar
Phinney, E.S., 1991, ApJ 380, L17 Google Scholar
Rees, M.J., Mészáros, P., 1992, MNRAS 258, 41PGoogle Scholar
Ruffert, M., Janka, H.-Th., Schäfer, G., 1996a, A&A 311, 532 Google Scholar
Ruffert, M., Janka, H.-Th., Takahashi, K., Schäfer, G., 1996b, A&A, in pressGoogle Scholar
Woosley, S.E., Baron, E., 1992, ApJ 391, 228 Google Scholar
Woosley, S.E., 1993, ApJ 405, 273 Google Scholar